Properties

Label 32.0.15114276532...9984.2
Degree $32$
Signature $[0, 16]$
Discriminant $2^{64}\cdot 17^{30}$
Root discriminant $56.96$
Ramified primes $2, 17$
Class number $3104$ (GRH)
Class group $[2, 2, 776]$ (GRH)
Galois group $C_2\times C_{16}$ (as 32T32)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![289, 0, 0, 0, 17340, 0, 0, 0, 83810, 0, 0, 0, 99994, 0, 0, 0, 45407, 0, 0, 0, 9554, 0, 0, 0, 1003, 0, 0, 0, 51, 0, 0, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^32 + 51*x^28 + 1003*x^24 + 9554*x^20 + 45407*x^16 + 99994*x^12 + 83810*x^8 + 17340*x^4 + 289)
 
gp: K = bnfinit(x^32 + 51*x^28 + 1003*x^24 + 9554*x^20 + 45407*x^16 + 99994*x^12 + 83810*x^8 + 17340*x^4 + 289, 1)
 

Normalized defining polynomial

\( x^{32} + 51 x^{28} + 1003 x^{24} + 9554 x^{20} + 45407 x^{16} + 99994 x^{12} + 83810 x^{8} + 17340 x^{4} + 289 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $32$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 16]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(151142765320815856472639544599622796222554813389533609984=2^{64}\cdot 17^{30}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $56.96$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 17$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(136=2^{3}\cdot 17\)
Dirichlet character group:    $\lbrace$$\chi_{136}(1,·)$, $\chi_{136}(3,·)$, $\chi_{136}(5,·)$, $\chi_{136}(135,·)$, $\chi_{136}(9,·)$, $\chi_{136}(11,·)$, $\chi_{136}(15,·)$, $\chi_{136}(131,·)$, $\chi_{136}(25,·)$, $\chi_{136}(27,·)$, $\chi_{136}(29,·)$, $\chi_{136}(133,·)$, $\chi_{136}(33,·)$, $\chi_{136}(37,·)$, $\chi_{136}(45,·)$, $\chi_{136}(47,·)$, $\chi_{136}(49,·)$, $\chi_{136}(55,·)$, $\chi_{136}(61,·)$, $\chi_{136}(75,·)$, $\chi_{136}(81,·)$, $\chi_{136}(87,·)$, $\chi_{136}(89,·)$, $\chi_{136}(91,·)$, $\chi_{136}(99,·)$, $\chi_{136}(103,·)$, $\chi_{136}(107,·)$, $\chi_{136}(109,·)$, $\chi_{136}(111,·)$, $\chi_{136}(121,·)$, $\chi_{136}(125,·)$, $\chi_{136}(127,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{17} a^{16}$, $\frac{1}{17} a^{17}$, $\frac{1}{17} a^{18}$, $\frac{1}{17} a^{19}$, $\frac{1}{17} a^{20}$, $\frac{1}{17} a^{21}$, $\frac{1}{17} a^{22}$, $\frac{1}{17} a^{23}$, $\frac{1}{17} a^{24}$, $\frac{1}{17} a^{25}$, $\frac{1}{17} a^{26}$, $\frac{1}{17} a^{27}$, $\frac{1}{2638828420553} a^{28} + \frac{22203801691}{2638828420553} a^{24} + \frac{39662487090}{2638828420553} a^{20} - \frac{3473372063}{2638828420553} a^{16} - \frac{74276387048}{155225201209} a^{12} - \frac{36448458563}{155225201209} a^{8} + \frac{12215456199}{155225201209} a^{4} - \frac{1308144924}{155225201209}$, $\frac{1}{2638828420553} a^{29} + \frac{22203801691}{2638828420553} a^{25} + \frac{39662487090}{2638828420553} a^{21} - \frac{3473372063}{2638828420553} a^{17} - \frac{74276387048}{155225201209} a^{13} - \frac{36448458563}{155225201209} a^{9} + \frac{12215456199}{155225201209} a^{5} - \frac{1308144924}{155225201209} a$, $\frac{1}{44860083149401} a^{30} - \frac{44348364962}{2638828420553} a^{26} + \frac{75380240986}{2638828420553} a^{22} - \frac{27596998570}{2638828420553} a^{18} - \frac{850402393093}{2638828420553} a^{14} + \frac{25248655592}{155225201209} a^{10} + \frac{718556247}{155225201209} a^{6} - \frac{54862314834}{155225201209} a^{2}$, $\frac{1}{44860083149401} a^{31} - \frac{44348364962}{2638828420553} a^{27} + \frac{75380240986}{2638828420553} a^{23} - \frac{27596998570}{2638828420553} a^{19} - \frac{850402393093}{2638828420553} a^{15} + \frac{25248655592}{155225201209} a^{11} + \frac{718556247}{155225201209} a^{7} - \frac{54862314834}{155225201209} a^{3}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{2}\times C_{776}$, which has order $3104$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $15$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -\frac{15659481977}{44860083149401} a^{30} - \frac{47011167184}{2638828420553} a^{26} - \frac{925587714696}{2638828420553} a^{22} - \frac{8833942592480}{2638828420553} a^{18} - \frac{42149161816084}{2638828420553} a^{14} - \frac{5511608578720}{155225201209} a^{10} - \frac{4767220925456}{155225201209} a^{6} - \frac{1234478842176}{155225201209} a^{2} \) (order $4$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 598124168304.8442 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_{16}$ (as 32T32):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 32
The 32 conjugacy class representatives for $C_2\times C_{16}$
Character table for $C_2\times C_{16}$ is not computed

Intermediate fields

\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{-17}) \), \(\Q(i, \sqrt{17})\), 4.4.4913.1, 4.0.78608.1, 8.0.6179217664.1, \(\Q(\zeta_{17})^+\), 8.0.105046700288.1, 16.0.11034809241396899282944.1, 16.0.48023489818559305679372288.1, 16.16.48023489818559305679372288.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R $16^{2}$ $16^{2}$ $16^{2}$ $16^{2}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{8}$ R ${\href{/LocalNumberField/19.8.0.1}{8} }^{4}$ $16^{2}$ $16^{2}$ $16^{2}$ $16^{2}$ $16^{2}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/53.8.0.1}{8} }^{4}$ ${\href{/LocalNumberField/59.8.0.1}{8} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
17Data not computed