Normalized defining polynomial
\( x^{32} + 51 x^{28} + 1003 x^{24} + 9554 x^{20} + 45407 x^{16} + 99994 x^{12} + 83810 x^{8} + 17340 x^{4} + 289 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{17} a^{16}$, $\frac{1}{17} a^{17}$, $\frac{1}{17} a^{18}$, $\frac{1}{17} a^{19}$, $\frac{1}{17} a^{20}$, $\frac{1}{17} a^{21}$, $\frac{1}{17} a^{22}$, $\frac{1}{17} a^{23}$, $\frac{1}{17} a^{24}$, $\frac{1}{17} a^{25}$, $\frac{1}{17} a^{26}$, $\frac{1}{17} a^{27}$, $\frac{1}{2638828420553} a^{28} + \frac{22203801691}{2638828420553} a^{24} + \frac{39662487090}{2638828420553} a^{20} - \frac{3473372063}{2638828420553} a^{16} - \frac{74276387048}{155225201209} a^{12} - \frac{36448458563}{155225201209} a^{8} + \frac{12215456199}{155225201209} a^{4} - \frac{1308144924}{155225201209}$, $\frac{1}{2638828420553} a^{29} + \frac{22203801691}{2638828420553} a^{25} + \frac{39662487090}{2638828420553} a^{21} - \frac{3473372063}{2638828420553} a^{17} - \frac{74276387048}{155225201209} a^{13} - \frac{36448458563}{155225201209} a^{9} + \frac{12215456199}{155225201209} a^{5} - \frac{1308144924}{155225201209} a$, $\frac{1}{44860083149401} a^{30} - \frac{44348364962}{2638828420553} a^{26} + \frac{75380240986}{2638828420553} a^{22} - \frac{27596998570}{2638828420553} a^{18} - \frac{850402393093}{2638828420553} a^{14} + \frac{25248655592}{155225201209} a^{10} + \frac{718556247}{155225201209} a^{6} - \frac{54862314834}{155225201209} a^{2}$, $\frac{1}{44860083149401} a^{31} - \frac{44348364962}{2638828420553} a^{27} + \frac{75380240986}{2638828420553} a^{23} - \frac{27596998570}{2638828420553} a^{19} - \frac{850402393093}{2638828420553} a^{15} + \frac{25248655592}{155225201209} a^{11} + \frac{718556247}{155225201209} a^{7} - \frac{54862314834}{155225201209} a^{3}$
Class group and class number
$C_{2}\times C_{2}\times C_{776}$, which has order $3104$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{15659481977}{44860083149401} a^{30} - \frac{47011167184}{2638828420553} a^{26} - \frac{925587714696}{2638828420553} a^{22} - \frac{8833942592480}{2638828420553} a^{18} - \frac{42149161816084}{2638828420553} a^{14} - \frac{5511608578720}{155225201209} a^{10} - \frac{4767220925456}{155225201209} a^{6} - \frac{1234478842176}{155225201209} a^{2} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 598124168304.8442 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{16}$ (as 32T32):
| An abelian group of order 32 |
| The 32 conjugacy class representatives for $C_2\times C_{16}$ |
| Character table for $C_2\times C_{16}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16^{2}$ | $16^{2}$ | $16^{2}$ | $16^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{8}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{4}$ | $16^{2}$ | $16^{2}$ | $16^{2}$ | $16^{2}$ | $16^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 17 | Data not computed | ||||||