Properties

Label 32.0.15114276532...9984.1
Degree $32$
Signature $[0, 16]$
Discriminant $2^{64}\cdot 17^{30}$
Root discriminant $56.96$
Ramified primes $2, 17$
Class number $27936$ (GRH)
Class group $[2, 6, 2328]$ (GRH)
Galois group $C_2\times C_{16}$ (as 32T32)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, 144, 0, 3396, 0, 31248, 0, 149106, 0, 425128, 0, 786798, 0, 995824, 0, 891311, 0, 575832, 0, 271214, 0, 93128, 0, 23051, 0, 4004, 0, 463, 0, 32, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^32 + 32*x^30 + 463*x^28 + 4004*x^26 + 23051*x^24 + 93128*x^22 + 271214*x^20 + 575832*x^18 + 891311*x^16 + 995824*x^14 + 786798*x^12 + 425128*x^10 + 149106*x^8 + 31248*x^6 + 3396*x^4 + 144*x^2 + 1)
 
gp: K = bnfinit(x^32 + 32*x^30 + 463*x^28 + 4004*x^26 + 23051*x^24 + 93128*x^22 + 271214*x^20 + 575832*x^18 + 891311*x^16 + 995824*x^14 + 786798*x^12 + 425128*x^10 + 149106*x^8 + 31248*x^6 + 3396*x^4 + 144*x^2 + 1, 1)
 

Normalized defining polynomial

\( x^{32} + 32 x^{30} + 463 x^{28} + 4004 x^{26} + 23051 x^{24} + 93128 x^{22} + 271214 x^{20} + 575832 x^{18} + 891311 x^{16} + 995824 x^{14} + 786798 x^{12} + 425128 x^{10} + 149106 x^{8} + 31248 x^{6} + 3396 x^{4} + 144 x^{2} + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $32$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 16]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(151142765320815856472639544599622796222554813389533609984=2^{64}\cdot 17^{30}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $56.96$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 17$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(136=2^{3}\cdot 17\)
Dirichlet character group:    $\lbrace$$\chi_{136}(1,·)$, $\chi_{136}(133,·)$, $\chi_{136}(7,·)$, $\chi_{136}(9,·)$, $\chi_{136}(19,·)$, $\chi_{136}(23,·)$, $\chi_{136}(25,·)$, $\chi_{136}(29,·)$, $\chi_{136}(5,·)$, $\chi_{136}(33,·)$, $\chi_{136}(35,·)$, $\chi_{136}(37,·)$, $\chi_{136}(39,·)$, $\chi_{136}(43,·)$, $\chi_{136}(45,·)$, $\chi_{136}(49,·)$, $\chi_{136}(31,·)$, $\chi_{136}(61,·)$, $\chi_{136}(63,·)$, $\chi_{136}(67,·)$, $\chi_{136}(71,·)$, $\chi_{136}(79,·)$, $\chi_{136}(81,·)$, $\chi_{136}(83,·)$, $\chi_{136}(89,·)$, $\chi_{136}(95,·)$, $\chi_{136}(59,·)$, $\chi_{136}(109,·)$, $\chi_{136}(115,·)$, $\chi_{136}(121,·)$, $\chi_{136}(123,·)$, $\chi_{136}(125,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{6}\times C_{2328}$, which has order $27936$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $15$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 36938367173.77557 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_{16}$ (as 32T32):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 32
The 32 conjugacy class representatives for $C_2\times C_{16}$
Character table for $C_2\times C_{16}$ is not computed

Intermediate fields

\(\Q(\sqrt{-2}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{-34}) \), \(\Q(\sqrt{-2}, \sqrt{17})\), 4.4.4913.1, 4.0.314432.2, 8.0.98867482624.1, \(\Q(\zeta_{17})^+\), 8.0.1680747204608.1, 16.0.2824911165797606216433664.1, 16.0.48023489818559305679372288.1, \(\Q(\zeta_{68})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R $16^{2}$ $16^{2}$ $16^{2}$ $16^{2}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{8}$ R ${\href{/LocalNumberField/19.8.0.1}{8} }^{4}$ $16^{2}$ $16^{2}$ $16^{2}$ $16^{2}$ $16^{2}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/53.8.0.1}{8} }^{4}$ ${\href{/LocalNumberField/59.8.0.1}{8} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
17Data not computed