# SageMath code for working with number field 32.0.14680252274932068764306928624388060814210236416.1 # (Note that not all these functions may be available, and some may take a long time to execute.) # Define the number field: x = polygen(QQ); K. = NumberField(x^32 - 4*x^30 + 10*x^28 - 32*x^26 + 83*x^24 - 208*x^22 + 458*x^20 - 956*x^18 + 2113*x^16 - 3824*x^14 + 7328*x^12 - 13312*x^10 + 21248*x^8 - 32768*x^6 + 40960*x^4 - 65536*x^2 + 65536) # Defining polynomial: K.defining_polynomial() # Degree over Q: K.degree() # Signature: K.signature() # Discriminant: K.disc() # Ramified primes: K.disc().support() # Integral basis: K.integral_basis() # Class group: K.class_group().invariants() # Unit group: UK = K.unit_group() # Unit rank: UK.rank() # Generator for roots of unity: UK.torsion_generator() # Fundamental units: UK.fundamental_units() # Regulator: K.regulator() # Galois group: K.galois_group(type='pari') # Frobenius cycle types: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]