Normalized defining polynomial
\( x^{32} + 352 x^{30} + 56144 x^{28} + 5366592 x^{26} + 342599400 x^{24} + 15409359680 x^{22} + 501989524960 x^{20} + 11990378367616 x^{18} + 210206320757268 x^{16} + 2680892206759360 x^{14} + 24396119081510176 x^{12} + 153347034226635392 x^{10} + 632556516184870992 x^{8} + 1577549854129070976 x^{6} + 2065839094692831040 x^{4} + 1069375531370406656 x^{2} + 91899459727144322 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{11} a^{2}$, $\frac{1}{11} a^{3}$, $\frac{1}{121} a^{4}$, $\frac{1}{121} a^{5}$, $\frac{1}{1331} a^{6}$, $\frac{1}{1331} a^{7}$, $\frac{1}{14641} a^{8}$, $\frac{1}{14641} a^{9}$, $\frac{1}{161051} a^{10}$, $\frac{1}{161051} a^{11}$, $\frac{1}{1771561} a^{12}$, $\frac{1}{1771561} a^{13}$, $\frac{1}{19487171} a^{14}$, $\frac{1}{19487171} a^{15}$, $\frac{1}{214358881} a^{16}$, $\frac{1}{214358881} a^{17}$, $\frac{1}{2357947691} a^{18}$, $\frac{1}{2357947691} a^{19}$, $\frac{1}{25937424601} a^{20}$, $\frac{1}{25937424601} a^{21}$, $\frac{1}{285311670611} a^{22}$, $\frac{1}{285311670611} a^{23}$, $\frac{1}{3138428376721} a^{24}$, $\frac{1}{3138428376721} a^{25}$, $\frac{1}{34522712143931} a^{26}$, $\frac{1}{34522712143931} a^{27}$, $\frac{1}{379749833583241} a^{28}$, $\frac{1}{379749833583241} a^{29}$, $\frac{1}{4177248169415651} a^{30}$, $\frac{1}{4177248169415651} a^{31}$
Class group and class number
Not computed
Unit group
Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
A cyclic group of order 32 |
The 32 conjugacy class representatives for $C_{32}$ |
Character table for $C_{32}$ is not computed |
Intermediate fields
\(\Q(\sqrt{2}) \), \(\Q(\zeta_{16})^+\), \(\Q(\zeta_{32})^+\), \(\Q(\zeta_{64})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | $32$ | $32$ | $16^{2}$ | R | $32$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{4}$ | $32$ | $16^{2}$ | $32$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{8}$ | $32$ | $16^{2}$ | $32$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{4}$ | $32$ | $32$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
2 | Data not computed | ||||||
11 | Data not computed |