Normalized defining polynomial
\( x^{32} - 14 x^{31} + 78 x^{30} - 188 x^{29} + 49 x^{28} + 296 x^{27} + 3226 x^{26} - 21675 x^{25} + 63975 x^{24} - 129988 x^{23} + 275925 x^{22} - 780056 x^{21} + 2403348 x^{20} - 6843359 x^{19} + 18026035 x^{18} - 44145382 x^{17} + 102440247 x^{16} - 225677648 x^{15} + 478360878 x^{14} - 961434547 x^{13} + 1830768541 x^{12} - 3240171528 x^{11} + 5352278301 x^{10} - 8101027726 x^{9} + 11338690706 x^{8} - 14331413831 x^{7} + 16632009985 x^{6} - 17012899062 x^{5} + 15839257061 x^{4} - 12277480374 x^{3} + 8585381539 x^{2} - 4158477603 x + 1842570739 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{15} - \frac{1}{2}$, $\frac{1}{2} a^{16} - \frac{1}{2} a$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{18} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{19} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{20} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{21} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{22} - \frac{1}{2} a^{7}$, $\frac{1}{2} a^{23} - \frac{1}{2} a^{8}$, $\frac{1}{4} a^{24} - \frac{1}{4} a^{18} - \frac{1}{4} a^{12} - \frac{1}{2} a^{9} - \frac{1}{4} a^{6} - \frac{1}{4}$, $\frac{1}{4} a^{25} - \frac{1}{4} a^{19} - \frac{1}{4} a^{13} - \frac{1}{2} a^{10} - \frac{1}{4} a^{7} - \frac{1}{4} a$, $\frac{1}{4} a^{26} - \frac{1}{4} a^{20} - \frac{1}{4} a^{14} - \frac{1}{2} a^{11} - \frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{27} - \frac{1}{4} a^{21} - \frac{1}{4} a^{15} + \frac{1}{4} a^{9} - \frac{1}{2} a^{6} + \frac{1}{4} a^{3} - \frac{1}{2}$, $\frac{1}{188} a^{28} - \frac{19}{188} a^{27} - \frac{2}{47} a^{26} + \frac{4}{47} a^{25} - \frac{3}{47} a^{23} + \frac{33}{188} a^{22} - \frac{39}{188} a^{21} - \frac{7}{47} a^{20} - \frac{23}{94} a^{19} + \frac{5}{94} a^{18} - \frac{11}{94} a^{17} - \frac{19}{188} a^{16} - \frac{25}{188} a^{15} - \frac{9}{94} a^{14} + \frac{13}{94} a^{13} - \frac{1}{47} a^{12} - \frac{33}{94} a^{11} - \frac{81}{188} a^{10} + \frac{5}{188} a^{9} + \frac{43}{94} a^{8} - \frac{9}{94} a^{7} + \frac{11}{47} a^{6} - \frac{9}{94} a^{5} - \frac{55}{188} a^{4} - \frac{37}{188} a^{3} - \frac{22}{47} a^{2} + \frac{1}{94} a - \frac{25}{94}$, $\frac{1}{188} a^{29} + \frac{7}{188} a^{27} + \frac{5}{188} a^{26} + \frac{11}{94} a^{25} - \frac{3}{47} a^{24} - \frac{7}{188} a^{23} + \frac{6}{47} a^{22} - \frac{17}{188} a^{21} + \frac{33}{188} a^{20} - \frac{9}{94} a^{19} - \frac{5}{47} a^{18} + \frac{33}{188} a^{17} - \frac{5}{94} a^{16} - \frac{23}{188} a^{15} + \frac{13}{188} a^{14} + \frac{5}{47} a^{13} + \frac{23}{94} a^{12} - \frac{19}{188} a^{11} - \frac{15}{94} a^{10} - \frac{7}{188} a^{9} + \frac{65}{188} a^{8} - \frac{4}{47} a^{7} + \frac{33}{94} a^{6} + \frac{73}{188} a^{5} + \frac{23}{94} a^{4} - \frac{39}{188} a^{3} + \frac{69}{188} a^{2} + \frac{41}{94} a + \frac{21}{47}$, $\frac{1}{366690052} a^{30} - \frac{127292}{91672513} a^{29} + \frac{513045}{366690052} a^{28} + \frac{4483979}{91672513} a^{27} - \frac{7982315}{91672513} a^{26} - \frac{24964425}{366690052} a^{25} - \frac{3315789}{91672513} a^{24} + \frac{25488843}{183345026} a^{23} - \frac{67064717}{366690052} a^{22} + \frac{33981857}{183345026} a^{21} - \frac{15830763}{91672513} a^{20} - \frac{63772195}{366690052} a^{19} - \frac{20872513}{183345026} a^{18} + \frac{14044627}{91672513} a^{17} - \frac{43861585}{366690052} a^{16} - \frac{5393790}{91672513} a^{15} + \frac{3134713}{91672513} a^{14} - \frac{980889}{7801916} a^{13} - \frac{17484574}{91672513} a^{12} + \frac{11687289}{91672513} a^{11} + \frac{164331591}{366690052} a^{10} + \frac{45079867}{91672513} a^{9} + \frac{84053661}{183345026} a^{8} + \frac{91539247}{366690052} a^{7} + \frac{29680161}{183345026} a^{6} - \frac{18819870}{91672513} a^{5} + \frac{53854053}{366690052} a^{4} - \frac{91063849}{183345026} a^{3} - \frac{395017}{1950479} a^{2} + \frac{51826079}{366690052} a + \frac{561421}{1534268}$, $\frac{1}{5297951055623851049695261420597432485966127529893685890192603737118051104714790593975392093622347312051249364416775471489604148} a^{31} + \frac{4289435506350556904628446356364189961152601570548449495218846086935768531833392032163641368490993568615848726539613603}{5297951055623851049695261420597432485966127529893685890192603737118051104714790593975392093622347312051249364416775471489604148} a^{30} - \frac{2221118958774948307853325476103719836939025727834269764249281716496935186477725215512541958423423241429130969006954753725127}{1324487763905962762423815355149358121491531882473421472548150934279512776178697648493848023405586828012812341104193867872401037} a^{29} + \frac{3660317396337084480504450073068943678665626379306128374616367582170163193262387812430811124089800113393933753477246119932957}{2648975527811925524847630710298716242983063764946842945096301868559025552357395296987696046811173656025624682208387735744802074} a^{28} - \frac{516297586144133773494198962350709161251858970670636152619076592206222395776858980944998472937293904028913904207898924375856531}{5297951055623851049695261420597432485966127529893685890192603737118051104714790593975392093622347312051249364416775471489604148} a^{27} - \frac{39795830784946064910878644958624953621398935797837338996516553544843471711955357328555402244139671527631752710110651103615957}{2648975527811925524847630710298716242983063764946842945096301868559025552357395296987696046811173656025624682208387735744802074} a^{26} - \frac{70856625096426076687877661697481983805049388069984051521248334329216968571160203515816168394997348024234552583092376894857831}{5297951055623851049695261420597432485966127529893685890192603737118051104714790593975392093622347312051249364416775471489604148} a^{25} + \frac{565789489958813507050550562376998980752211979190829757898285505322352739072423628163436372981151861270370483946296549247676825}{5297951055623851049695261420597432485966127529893685890192603737118051104714790593975392093622347312051249364416775471489604148} a^{24} + \frac{85214115880741582967321397739297437005556582612585125802741505141890547528464595836822076563531471292626884721855721512707070}{1324487763905962762423815355149358121491531882473421472548150934279512776178697648493848023405586828012812341104193867872401037} a^{23} + \frac{30214059210926396516210120323872576863679068255290758720364508373446743355649951144825453626258424509179655894755798615950931}{2648975527811925524847630710298716242983063764946842945096301868559025552357395296987696046811173656025624682208387735744802074} a^{22} + \frac{27839235576167350527145876747287739446493343111087235837983445817597865980410489130758684770173134878046856774678181520562381}{112722362885613852121175774906328350765236755955184806174310717811022363930101927531391321140901006639388284349293095138076684} a^{21} - \frac{631164986111536766337055967015236618995549427014017709881991149653418198234080620248858645903463784905384808203400974876966169}{2648975527811925524847630710298716242983063764946842945096301868559025552357395296987696046811173656025624682208387735744802074} a^{20} - \frac{669685542434726391939584133410090364648363477253765761227608223556138021209675192909643736216199954707907407139241251098406519}{5297951055623851049695261420597432485966127529893685890192603737118051104714790593975392093622347312051249364416775471489604148} a^{19} - \frac{636380267042039990195620409204804132836741826137160369469992484207727217002926716570219086974463820247825328320349873566918209}{5297951055623851049695261420597432485966127529893685890192603737118051104714790593975392093622347312051249364416775471489604148} a^{18} + \frac{567135940755293892087807221446913775351686284968153453544398773779549601602042695698713414749696983435411038649310047818490655}{2648975527811925524847630710298716242983063764946842945096301868559025552357395296987696046811173656025624682208387735744802074} a^{17} + \frac{660156235656222638941972514399870668026767130145055905140004587877758146323843471288952334724380301455658600559354217696392701}{2648975527811925524847630710298716242983063764946842945096301868559025552357395296987696046811173656025624682208387735744802074} a^{16} + \frac{524839682299017595554353992130497832455171596945722264847479876095939101881141397987882643957642484074534937322649229793472859}{5297951055623851049695261420597432485966127529893685890192603737118051104714790593975392093622347312051249364416775471489604148} a^{15} - \frac{76593168873333484668996492863599636602428202681193084520117994879087037866717258091029144791328688138638204098189297600300417}{2648975527811925524847630710298716242983063764946842945096301868559025552357395296987696046811173656025624682208387735744802074} a^{14} + \frac{593038839235550308066142708085158174453504214594729290308044175361963039235930490479596117264446016407874626733343390104034287}{5297951055623851049695261420597432485966127529893685890192603737118051104714790593975392093622347312051249364416775471489604148} a^{13} - \frac{865969664116819142696129485664964029065306732942354466769672508091755164561890697320055994012371007107751905205122882115056405}{5297951055623851049695261420597432485966127529893685890192603737118051104714790593975392093622347312051249364416775471489604148} a^{12} - \frac{383456645550856890806713206027225206053587344253354174216227328610093695304802401734607110637912089656931137811281926052591703}{1324487763905962762423815355149358121491531882473421472548150934279512776178697648493848023405586828012812341104193867872401037} a^{11} + \frac{256751075929918962903396584563742182427131219278267673052310124910462720588480943119293339453578956616219003573307334033919035}{1324487763905962762423815355149358121491531882473421472548150934279512776178697648493848023405586828012812341104193867872401037} a^{10} + \frac{2112315916704342894628621666030592972776521474891749999664769741004564346223691144205636670869490037520192058938661862446107407}{5297951055623851049695261420597432485966127529893685890192603737118051104714790593975392093622347312051249364416775471489604148} a^{9} - \frac{563563312725124710471953486533220497844083362395076869309619729335982616355514666831478947950461262828532337082857926884270569}{2648975527811925524847630710298716242983063764946842945096301868559025552357395296987696046811173656025624682208387735744802074} a^{8} - \frac{1003994210568448417099068157871914410716590433512373987520986335670340723438698916466248123534703622934410206580563695526716225}{5297951055623851049695261420597432485966127529893685890192603737118051104714790593975392093622347312051249364416775471489604148} a^{7} - \frac{2621654533413729514624065969230045074954499696261318364510974190737208712013283369173949008211461807002192113157821141277461371}{5297951055623851049695261420597432485966127529893685890192603737118051104714790593975392093622347312051249364416775471489604148} a^{6} + \frac{90844321784097255922264992913454489817180669376431862519229158796737522772435811826344615381348538571261877760008284736143217}{1324487763905962762423815355149358121491531882473421472548150934279512776178697648493848023405586828012812341104193867872401037} a^{5} - \frac{174084112661445761643369181824676240748150834214135502147061911022701268955193358256511763211956923254116275241248383069357969}{1324487763905962762423815355149358121491531882473421472548150934279512776178697648493848023405586828012812341104193867872401037} a^{4} + \frac{38956507708423207211542624225272738510947492395960207588754125250070956948790678093221795256242013939182443593114318520397665}{5297951055623851049695261420597432485966127529893685890192603737118051104714790593975392093622347312051249364416775471489604148} a^{3} + \frac{466432871782503843556613422244467181858233823090871791438457572350340242084020804586909980533333650992341629730037273231774459}{1324487763905962762423815355149358121491531882473421472548150934279512776178697648493848023405586828012812341104193867872401037} a^{2} + \frac{977071337855932268126500533048688885653556193047547392538830657536212794923587582493097160778592734537436674745302291676289623}{2648975527811925524847630710298716242983063764946842945096301868559025552357395296987696046811173656025624682208387735744802074} a - \frac{1684503737962347851221260113080685001622264351579451879782119711412738404255336217925920627157550515208930993631959970530329}{11083579614275839016098873264848185117083948807308966297474066395644458378064415468567765886239220318098848042712919396421766}$
Class group and class number
$C_{3}\times C_{182040}$, which has order $546120$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 42597284566.379654 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_8$ (as 32T37):
| An abelian group of order 32 |
| The 32 conjugacy class representatives for $C_2^2\times C_8$ |
| Character table for $C_2^2\times C_8$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{4}$ | R | R | ${\href{/LocalNumberField/11.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{16}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| 17 | Data not computed | ||||||