Normalized defining polynomial
\( x^{32} - x^{31} + 2 x^{30} - 13 x^{29} + 20 x^{28} - 18 x^{27} + 134 x^{26} - 237 x^{25} + 228 x^{24} - 1272 x^{23} + 1343 x^{22} - 1297 x^{21} + 9166 x^{20} - 10201 x^{19} + 1484 x^{18} - 39009 x^{17} + 47769 x^{16} + 118245 x^{15} + 50069 x^{14} + 29982 x^{13} + 25190 x^{12} + 81350 x^{11} + 89951 x^{10} + 32414 x^{9} + 26164 x^{8} + 15519 x^{7} + 32913 x^{6} + 37152 x^{5} + 13527 x^{4} + 6318 x^{3} + 4374 x^{2} + 8748 x + 6561 \)
Invariants
| Degree: | $32$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 16]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1392709810786878646248924865118341505527496337890625=3^{16}\cdot 5^{24}\cdot 13^{24}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $39.65$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(195=3\cdot 5\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{195}(1,·)$, $\chi_{195}(131,·)$, $\chi_{195}(8,·)$, $\chi_{195}(14,·)$, $\chi_{195}(148,·)$, $\chi_{195}(151,·)$, $\chi_{195}(157,·)$, $\chi_{195}(31,·)$, $\chi_{195}(161,·)$, $\chi_{195}(34,·)$, $\chi_{195}(164,·)$, $\chi_{195}(38,·)$, $\chi_{195}(44,·)$, $\chi_{195}(47,·)$, $\chi_{195}(53,·)$, $\chi_{195}(187,·)$, $\chi_{195}(181,·)$, $\chi_{195}(64,·)$, $\chi_{195}(194,·)$, $\chi_{195}(73,·)$, $\chi_{195}(77,·)$, $\chi_{195}(79,·)$, $\chi_{195}(83,·)$, $\chi_{195}(142,·)$, $\chi_{195}(86,·)$, $\chi_{195}(92,·)$, $\chi_{195}(103,·)$, $\chi_{195}(109,·)$, $\chi_{195}(112,·)$, $\chi_{195}(116,·)$, $\chi_{195}(118,·)$, $\chi_{195}(122,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{2} a^{15} - \frac{1}{2}$, $\frac{1}{2} a^{16} - \frac{1}{2} a$, $\frac{1}{6} a^{17} - \frac{1}{6} a^{15} - \frac{1}{3} a^{11} + \frac{1}{3} a^{9} - \frac{1}{3} a^{7} + \frac{1}{3} a^{3} - \frac{1}{2} a^{2} - \frac{1}{3} a - \frac{1}{2}$, $\frac{1}{6} a^{18} - \frac{1}{6} a^{16} - \frac{1}{3} a^{12} + \frac{1}{3} a^{10} - \frac{1}{3} a^{8} + \frac{1}{3} a^{4} - \frac{1}{2} a^{3} - \frac{1}{3} a^{2} - \frac{1}{2} a$, $\frac{1}{6} a^{19} - \frac{1}{6} a^{15} - \frac{1}{3} a^{13} - \frac{1}{3} a^{7} + \frac{1}{3} a^{5} - \frac{1}{2} a^{4} - \frac{1}{3} a - \frac{1}{2}$, $\frac{1}{6} a^{20} - \frac{1}{6} a^{16} - \frac{1}{3} a^{14} - \frac{1}{3} a^{8} + \frac{1}{3} a^{6} - \frac{1}{2} a^{5} - \frac{1}{3} a^{2} - \frac{1}{2} a$, $\frac{1}{6} a^{21} - \frac{1}{3} a^{11} - \frac{1}{2} a^{6} - \frac{1}{3} a$, $\frac{1}{18} a^{22} + \frac{1}{18} a^{21} - \frac{1}{18} a^{17} + \frac{2}{9} a^{15} - \frac{1}{9} a^{12} + \frac{1}{3} a^{11} + \frac{2}{9} a^{9} - \frac{7}{18} a^{7} - \frac{1}{2} a^{6} + \frac{2}{9} a^{3} - \frac{5}{18} a^{2} + \frac{1}{3} a$, $\frac{1}{18} a^{23} - \frac{1}{18} a^{21} - \frac{1}{18} a^{18} + \frac{1}{18} a^{17} + \frac{2}{9} a^{16} - \frac{2}{9} a^{15} - \frac{1}{9} a^{13} + \frac{4}{9} a^{12} - \frac{1}{3} a^{11} + \frac{2}{9} a^{10} - \frac{2}{9} a^{9} - \frac{7}{18} a^{8} - \frac{1}{9} a^{7} - \frac{1}{2} a^{6} + \frac{2}{9} a^{4} - \frac{1}{2} a^{3} - \frac{7}{18} a^{2} - \frac{1}{3} a$, $\frac{1}{18} a^{24} + \frac{1}{18} a^{21} - \frac{1}{18} a^{19} + \frac{1}{18} a^{18} - \frac{2}{9} a^{16} - \frac{1}{9} a^{15} - \frac{1}{9} a^{14} + \frac{4}{9} a^{13} - \frac{4}{9} a^{12} - \frac{1}{9} a^{11} - \frac{2}{9} a^{10} - \frac{1}{2} a^{9} - \frac{1}{9} a^{8} + \frac{4}{9} a^{7} - \frac{1}{2} a^{6} + \frac{2}{9} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{9} a^{2} - \frac{1}{3} a$, $\frac{1}{1098} a^{25} - \frac{25}{1098} a^{24} + \frac{1}{1098} a^{23} - \frac{7}{366} a^{22} + \frac{14}{183} a^{21} - \frac{37}{1098} a^{20} - \frac{17}{549} a^{19} - \frac{35}{1098} a^{18} + \frac{35}{549} a^{17} + \frac{5}{183} a^{16} + \frac{50}{549} a^{15} + \frac{65}{549} a^{14} + \frac{16}{61} a^{13} - \frac{118}{549} a^{12} - \frac{103}{549} a^{11} - \frac{463}{1098} a^{10} - \frac{181}{1098} a^{9} + \frac{131}{366} a^{8} - \frac{145}{366} a^{7} + \frac{155}{549} a^{6} - \frac{13}{1098} a^{5} - \frac{151}{549} a^{4} - \frac{5}{366} a^{3} + \frac{86}{183} a^{2} - \frac{9}{61} a + \frac{27}{61}$, $\frac{1}{121506876} a^{26} + \frac{1589}{30376719} a^{25} - \frac{343112}{30376719} a^{24} - \frac{338351}{121506876} a^{23} + \frac{1540289}{121506876} a^{22} + \frac{222545}{10125573} a^{21} + \frac{74555}{1991916} a^{20} + \frac{4912751}{60753438} a^{19} - \frac{1391981}{40502292} a^{18} - \frac{2368633}{121506876} a^{17} + \frac{25603703}{121506876} a^{16} + \frac{15052835}{121506876} a^{15} - \frac{6523385}{20251146} a^{14} - \frac{5127922}{30376719} a^{13} + \frac{8052419}{30376719} a^{12} - \frac{46782763}{121506876} a^{11} + \frac{7772683}{20251146} a^{10} - \frac{6115667}{30376719} a^{9} + \frac{36630149}{121506876} a^{8} - \frac{17906891}{40502292} a^{7} - \frac{26300369}{60753438} a^{6} + \frac{33900211}{121506876} a^{5} + \frac{2474977}{30376719} a^{4} - \frac{19252615}{121506876} a^{3} - \frac{55974983}{121506876} a^{2} - \frac{1873983}{13500764} a - \frac{5942635}{13500764}$, $\frac{1}{364520628} a^{27} - \frac{1}{364520628} a^{26} + \frac{1339}{2987874} a^{25} - \frac{6143581}{364520628} a^{24} + \frac{126086}{91130157} a^{23} + \frac{882817}{121506876} a^{22} - \frac{2278549}{364520628} a^{21} - \frac{1692169}{40502292} a^{20} + \frac{2744441}{121506876} a^{19} + \frac{472259}{6750382} a^{18} + \frac{2211842}{91130157} a^{17} + \frac{18545648}{91130157} a^{16} - \frac{20993831}{364520628} a^{15} + \frac{888313}{2987874} a^{14} + \frac{24482561}{91130157} a^{13} + \frac{27303151}{121506876} a^{12} + \frac{52833727}{121506876} a^{11} - \frac{1415787}{3375191} a^{10} + \frac{67139231}{364520628} a^{9} + \frac{4233163}{20251146} a^{8} + \frac{98392463}{364520628} a^{7} - \frac{91195303}{364520628} a^{6} - \frac{128004823}{364520628} a^{5} + \frac{52663253}{364520628} a^{4} + \frac{23913343}{91130157} a^{3} - \frac{8730131}{30376719} a^{2} + \frac{3475208}{10125573} a + \frac{1874515}{13500764}$, $\frac{1}{1093561884} a^{28} - \frac{1}{1093561884} a^{27} + \frac{1}{546780942} a^{26} + \frac{325625}{1093561884} a^{25} + \frac{665564}{273390471} a^{24} + \frac{773647}{40502292} a^{23} - \frac{25458193}{1093561884} a^{22} + \frac{6032009}{364520628} a^{21} - \frac{11686493}{364520628} a^{20} + \frac{4587512}{91130157} a^{19} + \frac{529813}{546780942} a^{18} + \frac{26002453}{546780942} a^{17} - \frac{56042321}{1093561884} a^{16} - \frac{135913979}{546780942} a^{15} + \frac{86677436}{273390471} a^{14} - \frac{15690445}{364520628} a^{13} - \frac{155335681}{364520628} a^{12} - \frac{16309469}{91130157} a^{11} + \frac{418868921}{1093561884} a^{10} + \frac{17592641}{182260314} a^{9} + \frac{171315701}{1093561884} a^{8} + \frac{140364305}{1093561884} a^{7} + \frac{219173045}{1093561884} a^{6} - \frac{6938005}{1093561884} a^{5} - \frac{265066969}{546780942} a^{4} + \frac{28073699}{182260314} a^{3} - \frac{5901233}{20251146} a^{2} - \frac{5733019}{40502292} a + \frac{1222078}{3375191}$, $\frac{1}{49843066541928443748} a^{29} + \frac{16709495321}{49843066541928443748} a^{28} + \frac{15287967269}{49843066541928443748} a^{27} + \frac{710764021}{24921533270964221874} a^{26} - \frac{5272477282869413}{24921533270964221874} a^{25} - \frac{61698588283372474}{4153588878494036979} a^{24} + \frac{402727385411831645}{49843066541928443748} a^{23} - \frac{171218970467218183}{8307177756988073958} a^{22} + \frac{48284907133010128}{4153588878494036979} a^{21} - \frac{1324445519351349439}{16614355513976147916} a^{20} + \frac{4443392956801547}{49843066541928443748} a^{19} + \frac{15045988910707853}{12460766635482110937} a^{18} - \frac{3117087503043679259}{49843066541928443748} a^{17} + \frac{1518816281692646227}{24921533270964221874} a^{16} + \frac{4230200134034748905}{49843066541928443748} a^{15} + \frac{2225792930297747365}{16614355513976147916} a^{14} - \frac{7294894200588482227}{16614355513976147916} a^{13} + \frac{1074142762504957441}{16614355513976147916} a^{12} - \frac{5509399026369171649}{12460766635482110937} a^{11} - \frac{300250009521011219}{2769059252329357986} a^{10} + \frac{2221230203847843923}{12460766635482110937} a^{9} - \frac{1133634574245573895}{49843066541928443748} a^{8} - \frac{2399183280621734107}{12460766635482110937} a^{7} + \frac{1474406854533543767}{12460766635482110937} a^{6} + \frac{11191830307739086255}{49843066541928443748} a^{5} - \frac{1936797795870446701}{16614355513976147916} a^{4} - \frac{1328477479883700385}{2769059252329357986} a^{3} + \frac{859193285906356103}{1846039501552905324} a^{2} + \frac{20899601238783949}{153836625129408777} a + \frac{22144313739471747}{205115500172545036}$, $\frac{1}{149529199625785331244} a^{30} - \frac{1}{149529199625785331244} a^{29} - \frac{38580030619}{149529199625785331244} a^{28} - \frac{47450740963}{149529199625785331244} a^{27} + \frac{8870710349}{149529199625785331244} a^{26} + \frac{711605089398137}{8307177756988073958} a^{25} + \frac{139622890483985701}{74764599812892665622} a^{24} - \frac{263272898191146214}{12460766635482110937} a^{23} - \frac{1171750549630602641}{49843066541928443748} a^{22} - \frac{416754210231750983}{24921533270964221874} a^{21} - \frac{1656183479653548499}{37382299906446332811} a^{20} + \frac{3806618617312754237}{149529199625785331244} a^{19} - \frac{620980488412756133}{149529199625785331244} a^{18} + \frac{377400600863615239}{74764599812892665622} a^{17} + \frac{28166955003910305845}{149529199625785331244} a^{16} + \frac{2945280924545073476}{12460766635482110937} a^{15} + \frac{14933386625689014905}{49843066541928443748} a^{14} + \frac{7203588423313743661}{49843066541928443748} a^{13} + \frac{59960356356944625815}{149529199625785331244} a^{12} - \frac{6310540486034490911}{49843066541928443748} a^{11} + \frac{17641939908368549783}{37382299906446332811} a^{10} + \frac{13571938712567444467}{74764599812892665622} a^{9} - \frac{16954145741161206001}{37382299906446332811} a^{8} - \frac{12003167356478129407}{149529199625785331244} a^{7} - \frac{10947077945112860741}{37382299906446332811} a^{6} - \frac{6146677781229039323}{12460766635482110937} a^{5} + \frac{375644949524864641}{1846039501552905324} a^{4} - \frac{2408008670688233065}{5538118504658715972} a^{3} + \frac{214695012340369226}{461509875388226331} a^{2} - \frac{210251638028826089}{615346500517635108} a + \frac{62166722414447045}{205115500172545036}$, $\frac{1}{897175197754711987464} a^{31} + \frac{1}{448587598877355993732} a^{30} + \frac{1}{112146899719338998433} a^{29} + \frac{289506793907}{897175197754711987464} a^{28} - \frac{117634817917}{897175197754711987464} a^{27} + \frac{1034206781501}{299058399251570662488} a^{26} + \frac{177123129620538185}{897175197754711987464} a^{25} + \frac{74312054083682053}{74764599812892665622} a^{24} + \frac{1147878201452616539}{149529199625785331244} a^{23} - \frac{668557171761868064}{37382299906446332811} a^{22} - \frac{29956757627723690473}{897175197754711987464} a^{21} + \frac{94489818525620023}{112146899719338998433} a^{20} - \frac{17221110157256726389}{448587598877355993732} a^{19} - \frac{21899577362694954049}{897175197754711987464} a^{18} + \frac{66253994441592951965}{897175197754711987464} a^{17} - \frac{2030563744088172391}{149529199625785331244} a^{16} + \frac{25152548344922386787}{299058399251570662488} a^{15} + \frac{41666876581520990039}{149529199625785331244} a^{14} + \frac{143323389634755612863}{897175197754711987464} a^{13} - \frac{4740595067421192727}{99686133083856887496} a^{12} + \frac{262062409140678819221}{897175197754711987464} a^{11} - \frac{288663194492723927389}{897175197754711987464} a^{10} + \frac{30542229215334882469}{448587598877355993732} a^{9} + \frac{23270250202042153933}{448587598877355993732} a^{8} + \frac{11140404622431334175}{112146899719338998433} a^{7} - \frac{38661889405889095303}{299058399251570662488} a^{6} - \frac{15667565447063392985}{49843066541928443748} a^{5} + \frac{2791637822502504103}{16614355513976147916} a^{4} - \frac{1537631671201221221}{11076237009317431944} a^{3} - \frac{502339503269218729}{1230693001035270216} a^{2} + \frac{441667630124167739}{1230693001035270216} a + \frac{40192623830384865}{410231000345090072}$
Class group and class number
$C_{104}$, which has order $104$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{47307868738559351}{299058399251570662488} a^{31} - \frac{3425684769569023}{12460766635482110937} a^{30} + \frac{85642119239225575}{149529199625785331244} a^{29} - \frac{763927703613892129}{299058399251570662488} a^{28} + \frac{1517578352919077189}{299058399251570662488} a^{27} - \frac{2154397155295138613}{299058399251570662488} a^{26} + \frac{8266177348970052499}{299058399251570662488} a^{25} - \frac{8656705412700921121}{149529199625785331244} a^{24} + \frac{2093093394206673053}{24921533270964221874} a^{23} - \frac{510427030665784427}{1846039501552905324} a^{22} + \frac{125474429347062377023}{299058399251570662488} a^{21} - \frac{20941210996375437599}{37382299906446332811} a^{20} + \frac{10712116274442334921}{5538118504658715972} a^{19} - \frac{99773068913697794875}{33228711027952295832} a^{18} + \frac{837412067605917241373}{299058399251570662488} a^{17} - \frac{1319126349085521816619}{149529199625785331244} a^{16} + \frac{1334273386584208337293}{99686133083856887496} a^{15} + \frac{7361796569803830427}{923019750776452662} a^{14} + \frac{1516978858084402609975}{299058399251570662488} a^{13} + \frac{3110785548495929698771}{299058399251570662488} a^{12} - \frac{2824060181791403278139}{299058399251570662488} a^{11} + \frac{2727403463194382058749}{299058399251570662488} a^{10} + \frac{204794286894375332986}{37382299906446332811} a^{9} + \frac{130080102070074941356}{37382299906446332811} a^{8} + \frac{222337218599338299769}{49843066541928443748} a^{7} - \frac{1599699254602031439961}{299058399251570662488} a^{6} + \frac{20797332236053538633}{5538118504658715972} a^{5} + \frac{2997474173372895125}{1846039501552905324} a^{4} + \frac{1031131115640275923}{1230693001035270216} a^{3} + \frac{483021552509232243}{410231000345090072} a^{2} - \frac{2460860291101500197}{1230693001035270216} a + \frac{154155814630606035}{410231000345090072} \) (order $30$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 594640437801.8693 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_4^2$ (as 32T36):
| An abelian group of order 32 |
| The 32 conjugacy class representatives for $C_2\times C_4^2$ |
| Character table for $C_2\times C_4^2$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{8}$ | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{8}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 5 | Data not computed | ||||||
| 13 | Data not computed | ||||||