Normalized defining polynomial
\( x^{32} + 3 x^{30} - 9 x^{28} - 85 x^{26} - 114 x^{24} - 1521 x^{22} - 2090 x^{20} + 22329 x^{18} + 111717 x^{16} - 44722 x^{14} - 41235 x^{12} + 33462 x^{10} + 16051 x^{8} + 13275 x^{6} - 11826 x^{4} - 2916 x^{2} + 6561 \)
Invariants
| Degree: | $32$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 16]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(138956997215838851269528412416000000000000000000000000=2^{32}\cdot 5^{24}\cdot 13^{24}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $45.78$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(260=2^{2}\cdot 5\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{260}(1,·)$, $\chi_{260}(259,·)$, $\chi_{260}(129,·)$, $\chi_{260}(131,·)$, $\chi_{260}(21,·)$, $\chi_{260}(151,·)$, $\chi_{260}(27,·)$, $\chi_{260}(157,·)$, $\chi_{260}(31,·)$, $\chi_{260}(161,·)$, $\chi_{260}(47,·)$, $\chi_{260}(177,·)$, $\chi_{260}(51,·)$, $\chi_{260}(53,·)$, $\chi_{260}(183,·)$, $\chi_{260}(57,·)$, $\chi_{260}(187,·)$, $\chi_{260}(181,·)$, $\chi_{260}(73,·)$, $\chi_{260}(203,·)$, $\chi_{260}(77,·)$, $\chi_{260}(79,·)$, $\chi_{260}(209,·)$, $\chi_{260}(83,·)$, $\chi_{260}(213,·)$, $\chi_{260}(207,·)$, $\chi_{260}(99,·)$, $\chi_{260}(229,·)$, $\chi_{260}(103,·)$, $\chi_{260}(233,·)$, $\chi_{260}(109,·)$, $\chi_{260}(239,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} - \frac{1}{3} a^{7} + \frac{1}{3} a^{5} - \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{8} + \frac{1}{3} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{11} + \frac{1}{3} a$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{3}$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{4}$, $\frac{1}{3} a^{15} + \frac{1}{3} a^{5}$, $\frac{1}{3} a^{16} + \frac{1}{3} a^{6}$, $\frac{1}{3} a^{17} + \frac{1}{3} a^{7}$, $\frac{1}{9} a^{18} + \frac{1}{9} a^{16} - \frac{1}{9} a^{12} - \frac{1}{9} a^{10} + \frac{2}{9} a^{8} + \frac{1}{9} a^{4} - \frac{2}{9} a^{2}$, $\frac{1}{27} a^{19} - \frac{2}{27} a^{17} + \frac{1}{9} a^{15} - \frac{4}{27} a^{13} - \frac{4}{27} a^{11} - \frac{4}{27} a^{9} + \frac{4}{9} a^{7} - \frac{11}{27} a^{5} + \frac{1}{27} a^{3} + \frac{1}{3} a$, $\frac{1}{108} a^{20} + \frac{1}{27} a^{18} - \frac{1}{27} a^{14} + \frac{2}{27} a^{12} - \frac{1}{108} a^{10} - \frac{1}{9} a^{8} + \frac{4}{27} a^{6} + \frac{13}{27} a^{4} + \frac{2}{9} a^{2} - \frac{1}{4}$, $\frac{1}{108} a^{21} + \frac{2}{27} a^{17} - \frac{4}{27} a^{15} - \frac{1}{9} a^{13} + \frac{5}{36} a^{11} + \frac{1}{27} a^{9} - \frac{8}{27} a^{7} - \frac{1}{9} a^{5} - \frac{4}{27} a^{3} + \frac{5}{12} a$, $\frac{1}{108} a^{22} - \frac{1}{27} a^{18} + \frac{2}{27} a^{16} - \frac{1}{9} a^{14} - \frac{1}{12} a^{12} + \frac{4}{27} a^{10} + \frac{13}{27} a^{8} + \frac{2}{9} a^{6} - \frac{7}{27} a^{4} + \frac{11}{36} a^{2}$, $\frac{1}{108} a^{23} + \frac{11}{108} a^{13} + \frac{1}{108} a^{3}$, $\frac{1}{108} a^{24} + \frac{11}{108} a^{14} + \frac{1}{108} a^{4}$, $\frac{1}{108} a^{25} + \frac{11}{108} a^{15} + \frac{1}{108} a^{5}$, $\frac{1}{1456295763348} a^{26} + \frac{436656233}{242715960558} a^{24} - \frac{8598646}{40452660093} a^{22} + \frac{162482033}{40452660093} a^{20} + \frac{491600858}{13484220031} a^{18} + \frac{123874714055}{1456295763348} a^{16} - \frac{18370971659}{242715960558} a^{14} + \frac{5004295789}{40452660093} a^{12} + \frac{1877518436}{13484220031} a^{10} + \frac{14849052893}{40452660093} a^{8} - \frac{229642858259}{1456295763348} a^{6} + \frac{115372803131}{242715960558} a^{4} + \frac{1952193478}{13484220031} a^{2} - \frac{1226994442}{13484220031}$, $\frac{1}{1456295763348} a^{27} + \frac{436656233}{242715960558} a^{25} - \frac{8598646}{40452660093} a^{23} + \frac{162482033}{40452660093} a^{21} - \frac{210996865}{364073940837} a^{19} + \frac{231748474303}{1456295763348} a^{17} + \frac{35565908465}{242715960558} a^{15} - \frac{22382438054}{364073940837} a^{13} - \frac{16728102383}{364073940837} a^{11} - \frac{55137604397}{364073940837} a^{9} + \frac{93978422485}{1456295763348} a^{7} - \frac{328092592157}{728147881674} a^{5} + \frac{160582984154}{364073940837} a^{3} - \frac{17165203357}{40452660093} a$, $\frac{1}{4368887290044} a^{28} - \frac{756717713}{1456295763348} a^{24} - \frac{8397050963}{2184443645022} a^{22} - \frac{3173183095}{1456295763348} a^{20} + \frac{5400358661}{161810640372} a^{18} - \frac{168127493225}{1092221822511} a^{16} - \frac{171885519311}{1456295763348} a^{14} + \frac{1736565031}{728147881674} a^{12} + \frac{496758606893}{4368887290044} a^{10} - \frac{260557156309}{1456295763348} a^{8} - \frac{41468490176}{121357980279} a^{6} - \frac{1786851985187}{4368887290044} a^{4} + \frac{17199500173}{242715960558} a^{2} + \frac{11770936847}{53936880124}$, $\frac{1}{13106661870132} a^{29} + \frac{1}{4368887290044} a^{27} - \frac{1936833391}{728147881674} a^{25} - \frac{58175415787}{13106661870132} a^{23} - \frac{5404024969}{2184443645022} a^{21} - \frac{20038173253}{1456295763348} a^{19} + \frac{346356730753}{13106661870132} a^{17} + \frac{45123612001}{728147881674} a^{15} + \frac{119640879623}{1456295763348} a^{13} + \frac{491858299939}{6553330935066} a^{11} - \frac{588981334145}{4368887290044} a^{9} - \frac{86800180055}{485431921116} a^{7} - \frac{2059740739483}{6553330935066} a^{5} + \frac{147261155443}{485431921116} a^{3} - \frac{16794850507}{80905320186} a$, $\frac{1}{39319985610396} a^{30} + \frac{1}{13106661870132} a^{28} - \frac{1}{4368887290044} a^{26} + \frac{9257801039}{9829996402599} a^{24} - \frac{29349668189}{13106661870132} a^{22} + \frac{11712482075}{4368887290044} a^{20} + \frac{2117068222525}{39319985610396} a^{18} - \frac{17551756493}{161810640372} a^{16} + \frac{89087782901}{1092221822511} a^{14} - \frac{5001641332921}{39319985610396} a^{12} - \frac{706711017953}{13106661870132} a^{10} - \frac{1981734423185}{4368887290044} a^{8} - \frac{15464536204685}{39319985610396} a^{6} + \frac{324155339690}{1092221822511} a^{4} + \frac{73440071909}{485431921116} a^{2} - \frac{5866965635}{13484220031}$, $\frac{1}{117959956831188} a^{31} + \frac{1}{39319985610396} a^{29} - \frac{1}{13106661870132} a^{27} + \frac{9257801039}{29489989207797} a^{25} + \frac{46004156045}{19659992805198} a^{23} + \frac{11712482075}{13106661870132} a^{21} + \frac{660772459177}{117959956831188} a^{19} - \frac{535523969305}{4368887290044} a^{17} - \frac{32270197378}{3276665467533} a^{15} + \frac{2414177534839}{58979978415594} a^{13} + \frac{1235016666511}{39319985610396} a^{11} + \frac{121803901651}{13106661870132} a^{9} - \frac{19833423494729}{117959956831188} a^{7} + \frac{1133208541550}{3276665467533} a^{5} + \frac{191788566311}{728147881674} a^{3} + \frac{7617254396}{40452660093} a$
Class group and class number
$C_{4}\times C_{4}\times C_{4}$, which has order $64$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{1620997322}{29489989207797} a^{31} - \frac{6359036717}{39319985610396} a^{29} + \frac{1620997322}{3276665467533} a^{27} + \frac{137784772370}{29489989207797} a^{25} + \frac{61597898236}{9829996402599} a^{23} + \frac{273948547418}{3276665467533} a^{21} + \frac{12532743803623}{117959956831188} a^{19} - \frac{1340564785294}{1092221822511} a^{17} - \frac{20121439757986}{3276665467533} a^{15} + \frac{72494242234484}{29489989207797} a^{13} + \frac{22280608190890}{9829996402599} a^{11} + \frac{66474293300125}{13106661870132} a^{9} - \frac{26018628015422}{29489989207797} a^{7} - \frac{2390971049950}{3276665467533} a^{5} + \frac{236665609012}{364073940837} a^{3} + \frac{6483989288}{40452660093} a \) (order $20$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4622596654413.537 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_4^2$ (as 32T36):
| An abelian group of order 32 |
| The 32 conjugacy class representatives for $C_2\times C_4^2$ |
| Character table for $C_2\times C_4^2$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{8}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{8}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| 5 | Data not computed | ||||||
| 13 | Data not computed | ||||||