Normalized defining polynomial
\( x^{32} - 2 x^{31} - 16 x^{30} + 24 x^{29} + 141 x^{28} - 120 x^{27} - 852 x^{26} - 70 x^{25} + 4216 x^{24} + 4978 x^{23} - 15640 x^{22} - 47344 x^{21} + 45797 x^{20} + 270436 x^{19} - 110380 x^{18} - 986938 x^{17} + 284105 x^{16} + 1973876 x^{15} - 441520 x^{14} - 2163488 x^{13} + 732752 x^{12} + 1515008 x^{11} - 1000960 x^{10} - 637184 x^{9} + 1079296 x^{8} + 35840 x^{7} - 872448 x^{6} + 245760 x^{5} + 577536 x^{4} - 196608 x^{3} - 262144 x^{2} + 65536 x + 65536 \)
Invariants
Degree: | $32$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[0, 16]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(133516116647406931991162570051420160000000000000000\)\(\medspace = 2^{48}\cdot 3^{16}\cdot 5^{16}\cdot 13^{8}\cdot 97^{4}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $36.85$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $2, 3, 5, 13, 97$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $8$ | ||
This field is not Galois over $\Q$. | |||
This is a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{2} a^{13} - \frac{1}{2} a$, $\frac{1}{4} a^{14} - \frac{1}{2} a^{11} - \frac{1}{2} a^{5} + \frac{1}{4} a^{2}$, $\frac{1}{4} a^{15} - \frac{1}{2} a^{12} - \frac{1}{2} a^{6} + \frac{1}{4} a^{3}$, $\frac{1}{4} a^{16} - \frac{1}{2} a^{7} + \frac{1}{4} a^{4} - \frac{1}{2} a$, $\frac{1}{4} a^{17} - \frac{1}{2} a^{8} + \frac{1}{4} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{18} - \frac{1}{8} a^{17} - \frac{1}{8} a^{16} - \frac{1}{8} a^{15} - \frac{1}{4} a^{13} + \frac{1}{4} a^{12} - \frac{1}{2} a^{11} + \frac{1}{4} a^{9} + \frac{1}{4} a^{8} + \frac{1}{4} a^{7} - \frac{1}{8} a^{6} + \frac{3}{8} a^{5} + \frac{3}{8} a^{4} + \frac{1}{8} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{19} - \frac{1}{8} a^{15} - \frac{1}{4} a^{12} + \frac{1}{4} a^{10} - \frac{1}{2} a^{9} - \frac{3}{8} a^{7} + \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} - \frac{1}{8} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{16} a^{20} + \frac{1}{16} a^{16} - \frac{1}{8} a^{15} + \frac{1}{8} a^{13} + \frac{1}{4} a^{12} - \frac{3}{8} a^{11} - \frac{1}{4} a^{10} - \frac{1}{2} a^{9} + \frac{5}{16} a^{8} + \frac{3}{8} a^{7} - \frac{1}{2} a^{6} - \frac{1}{8} a^{5} - \frac{7}{16} a^{4} - \frac{3}{8} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{32} a^{21} - \frac{3}{32} a^{17} + \frac{1}{16} a^{16} + \frac{1}{16} a^{14} - \frac{1}{8} a^{13} + \frac{5}{16} a^{12} + \frac{3}{8} a^{11} + \frac{1}{4} a^{10} + \frac{5}{32} a^{9} + \frac{7}{16} a^{8} + \frac{7}{16} a^{6} + \frac{5}{32} a^{5} - \frac{1}{16} a^{4} + \frac{3}{8} a^{3} - \frac{1}{2} a$, $\frac{1}{64} a^{22} - \frac{3}{64} a^{18} + \frac{1}{32} a^{17} + \frac{1}{32} a^{15} - \frac{1}{16} a^{14} + \frac{5}{32} a^{13} + \frac{3}{16} a^{12} + \frac{1}{8} a^{11} + \frac{5}{64} a^{10} - \frac{9}{32} a^{9} - \frac{9}{32} a^{7} + \frac{5}{64} a^{6} - \frac{1}{32} a^{5} + \frac{3}{16} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{128} a^{23} - \frac{3}{128} a^{19} + \frac{1}{64} a^{18} + \frac{1}{64} a^{16} - \frac{1}{32} a^{15} + \frac{5}{64} a^{14} + \frac{3}{32} a^{13} + \frac{1}{16} a^{12} - \frac{59}{128} a^{11} + \frac{23}{64} a^{10} + \frac{23}{64} a^{8} - \frac{59}{128} a^{7} - \frac{1}{64} a^{6} + \frac{3}{32} a^{5} - \frac{1}{4} a^{4} + \frac{3}{8} a^{3}$, $\frac{1}{768} a^{24} + \frac{1}{384} a^{23} + \frac{1}{192} a^{22} - \frac{19}{768} a^{20} - \frac{1}{192} a^{19} - \frac{1}{96} a^{18} - \frac{43}{384} a^{17} + \frac{1}{16} a^{16} + \frac{37}{384} a^{15} + \frac{1}{48} a^{14} - \frac{11}{96} a^{13} + \frac{133}{768} a^{12} - \frac{41}{96} a^{11} - \frac{5}{48} a^{10} + \frac{115}{384} a^{9} + \frac{91}{256} a^{8} - \frac{1}{24} a^{7} + \frac{55}{192} a^{6} - \frac{13}{48} a^{5} - \frac{19}{48} a^{4} + \frac{1}{8} a^{3} - \frac{5}{12} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{1536} a^{25} - \frac{1}{192} a^{22} - \frac{19}{1536} a^{21} + \frac{17}{768} a^{20} - \frac{35}{768} a^{18} - \frac{41}{384} a^{17} - \frac{11}{768} a^{16} - \frac{11}{128} a^{15} - \frac{5}{64} a^{14} + \frac{103}{512} a^{13} + \frac{29}{256} a^{12} - \frac{1}{8} a^{11} - \frac{63}{256} a^{10} + \frac{581}{1536} a^{9} - \frac{289}{768} a^{8} - \frac{121}{384} a^{7} + \frac{5}{64} a^{6} + \frac{31}{96} a^{5} - \frac{1}{24} a^{4} + \frac{1}{6} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{3}$, $\frac{1}{3072} a^{26} - \frac{1}{384} a^{23} - \frac{19}{3072} a^{22} + \frac{17}{1536} a^{21} - \frac{35}{1536} a^{19} - \frac{41}{768} a^{18} - \frac{11}{1536} a^{17} + \frac{21}{256} a^{16} + \frac{11}{128} a^{15} + \frac{103}{1024} a^{14} - \frac{99}{512} a^{13} + \frac{3}{16} a^{12} - \frac{63}{512} a^{11} + \frac{581}{3072} a^{10} + \frac{479}{1536} a^{9} - \frac{121}{768} a^{8} + \frac{37}{128} a^{7} + \frac{79}{192} a^{6} - \frac{1}{48} a^{5} - \frac{7}{24} a^{4} - \frac{1}{4} a^{2} + \frac{1}{3} a$, $\frac{1}{6144} a^{27} - \frac{1}{2048} a^{23} - \frac{5}{1024} a^{22} + \frac{27}{1024} a^{20} - \frac{49}{1536} a^{19} + \frac{101}{3072} a^{18} - \frac{157}{1536} a^{17} + \frac{11}{256} a^{16} + \frac{709}{6144} a^{15} - \frac{41}{3072} a^{14} + \frac{19}{96} a^{13} + \frac{1303}{3072} a^{12} - \frac{681}{2048} a^{11} + \frac{229}{1024} a^{10} - \frac{255}{512} a^{9} - \frac{3}{16} a^{8} - \frac{55}{128} a^{7} + \frac{43}{96} a^{6} - \frac{1}{96} a^{5} + \frac{17}{48} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} + \frac{1}{6} a + \frac{1}{3}$, $\frac{1}{81051648} a^{28} - \frac{2383}{40525824} a^{27} + \frac{491}{10131456} a^{26} + \frac{2869}{10131456} a^{25} + \frac{10559}{27017216} a^{24} - \frac{39089}{20262912} a^{23} - \frac{109073}{20262912} a^{22} + \frac{619693}{40525824} a^{21} - \frac{74795}{5065728} a^{20} - \frac{89927}{40525824} a^{19} + \frac{2753}{5065728} a^{18} + \frac{139373}{1688576} a^{17} - \frac{9262459}{81051648} a^{16} + \frac{106269}{3377152} a^{15} - \frac{138745}{6754304} a^{14} + \frac{563041}{13508608} a^{13} - \frac{14338159}{81051648} a^{12} + \frac{1307137}{3377152} a^{11} - \frac{1692349}{5065728} a^{10} - \frac{2227573}{5065728} a^{9} - \frac{608027}{1266432} a^{8} - \frac{245039}{633216} a^{7} - \frac{45479}{316608} a^{6} + \frac{72257}{158304} a^{5} - \frac{1895}{6596} a^{4} - \frac{11275}{79152} a^{3} - \frac{1019}{19788} a^{2} - \frac{181}{9894} a - \frac{4943}{19788}$, $\frac{1}{162103296} a^{29} + \frac{483}{13508608} a^{27} + \frac{465}{6754304} a^{26} - \frac{6641}{54034432} a^{25} - \frac{16709}{27017216} a^{24} + \frac{44743}{13508608} a^{23} + \frac{137563}{27017216} a^{22} - \frac{547081}{40525824} a^{21} + \frac{52025}{81051648} a^{20} + \frac{2063771}{40525824} a^{19} + \frac{19997}{3377152} a^{18} + \frac{8013733}{162103296} a^{17} + \frac{7283239}{81051648} a^{16} + \frac{710461}{40525824} a^{15} + \frac{3029455}{81051648} a^{14} - \frac{588633}{3178496} a^{13} - \frac{10759767}{27017216} a^{12} + \frac{1627743}{3377152} a^{11} - \frac{870521}{3377152} a^{10} - \frac{102157}{1688576} a^{9} - \frac{122875}{1266432} a^{8} - \frac{22225}{158304} a^{7} + \frac{75265}{158304} a^{6} - \frac{25219}{52768} a^{5} + \frac{10545}{52768} a^{4} + \frac{5039}{79152} a^{3} + \frac{3817}{19788} a^{2} - \frac{2893}{13192} a + \frac{429}{6596}$, $\frac{1}{598402848352660034974740185088} a^{30} + \frac{326776950826175549251}{299201424176330017487370092544} a^{29} + \frac{158218030228950058239}{49866904029388336247895015424} a^{28} + \frac{2969427242425070657756047}{37400178022041252185921261568} a^{27} + \frac{13955385684264217753300925}{598402848352660034974740185088} a^{26} - \frac{1704016182371137552507467}{12466726007347084061973753856} a^{25} - \frac{5388129617577487362777799}{12466726007347084061973753856} a^{24} - \frac{427271228343043661791050467}{299201424176330017487370092544} a^{23} - \frac{157028167863589510945366393}{24933452014694168123947507712} a^{22} - \frac{1921084837330397278289538019}{299201424176330017487370092544} a^{21} - \frac{1093189392261517330167651013}{74800356044082504371842523136} a^{20} + \frac{590087980565331676139811683}{74800356044082504371842523136} a^{19} - \frac{25986524818727712383379542267}{598402848352660034974740185088} a^{18} + \frac{5395426288012479615807019723}{149600712088165008743685046272} a^{17} + \frac{1285530843192322617504396811}{74800356044082504371842523136} a^{16} + \frac{19874165932262520156471595675}{299201424176330017487370092544} a^{15} + \frac{4462854213217792021100121683}{199467616117553344991580061696} a^{14} + \frac{18436073132524687021092301213}{149600712088165008743685046272} a^{13} - \frac{39802758537167495577023850871}{149600712088165008743685046272} a^{12} - \frac{5531388674347704395499175429}{12466726007347084061973753856} a^{11} - \frac{1388786748997080835247866001}{9350044505510313046480315392} a^{10} + \frac{1198630364576102253551123087}{3116681501836771015493438464} a^{9} - \frac{68271250132769506479929095}{146094445398598641351254928} a^{8} + \frac{407002032361370486853134455}{1168755563188789130810039424} a^{7} - \frac{162661519246349830237865695}{584377781594394565405019712} a^{6} + \frac{61532709872252597077400279}{194792593864798188468339904} a^{5} - \frac{30893090842487416852445149}{73047222699299320675627464} a^{4} - \frac{14101993637201260406596607}{146094445398598641351254928} a^{3} - \frac{33118316700284851791528935}{146094445398598641351254928} a^{2} + \frac{3333018920653225974891755}{12174537116549886779271244} a - \frac{312148130864346702907331}{2148447726449980019871396}$, $\frac{1}{12434334860100986809387261152941309952} a^{31} + \frac{73171}{777145928756311675586703822058831872} a^{30} + \frac{29477130191122850739523505}{45714466397430098563923754238754816} a^{29} - \frac{6824284370529659194782074789}{1554291857512623351173407644117663744} a^{28} - \frac{967674834811546390325602135249187}{12434334860100986809387261152941309952} a^{27} - \frac{320557083149055446369122210179309}{2072389143350164468231210192156884992} a^{26} + \frac{63615569273365910854525357213849}{259048642918770558528901274019610624} a^{25} + \frac{881689787942793104202308654813343}{2072389143350164468231210192156884992} a^{24} + \frac{4433501758661806296808687266301931}{3108583715025246702346815288235327488} a^{23} - \frac{3479216098785400890778815642709481}{2072389143350164468231210192156884992} a^{22} + \frac{39707675432421183825714734644184807}{3108583715025246702346815288235327488} a^{21} - \frac{43468549124274763282533561858252679}{1554291857512623351173407644117663744} a^{20} - \frac{267070758095842630687405346494535627}{12434334860100986809387261152941309952} a^{19} + \frac{211274765151909098065987395850807231}{6217167430050493404693630576470654976} a^{18} - \frac{6468100326318932274876305609802575}{259048642918770558528901274019610624} a^{17} + \frac{84985746751804137246553491743520611}{6217167430050493404693630576470654976} a^{16} - \frac{8242218207398968603693269832081019}{731431462358881577022780067820077056} a^{15} + \frac{256988163054841813172219564249679405}{2072389143350164468231210192156884992} a^{14} + \frac{758477515494939438046406343507817283}{3108583715025246702346815288235327488} a^{13} + \frac{569596929385992126957412021220503507}{1554291857512623351173407644117663744} a^{12} + \frac{2055139382673627499520922727675053}{7619077732905016427320625706459136} a^{11} - \frac{46185784680388740482242192644997253}{194286482189077918896675955514707968} a^{10} + \frac{11307952817233586900611399102397533}{32381080364846319816112659252451328} a^{9} + \frac{4586730622439270414920686862143763}{12142905136817369931042247219669248} a^{8} - \frac{1719254338278055710461972536704665}{6071452568408684965521123609834624} a^{7} - \frac{902720704492500713063455530042323}{4047635045605789977014082406556416} a^{6} + \frac{2377595239436245230780419243143549}{6071452568408684965521123609834624} a^{5} + \frac{1074150274413796427738442133586641}{3035726284204342482760561804917312} a^{4} - \frac{18390655613899566595244306335043}{1011908761401447494253520601639104} a^{3} - \frac{27828908776553173167465074004949}{1517863142102171241380280902458656} a^{2} + \frac{18956989136110083353868247209851}{758931571051085620690140451229328} a + \frac{1543893723390298823524563826061}{7159731802368732270661702370088}$
Class group and class number
$C_{20}$, which has order $20$ (assuming GRH)
Unit group
Rank: | $15$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( \frac{6280699354319001510588492377}{126794282073490438265545608134656} a^{31} - \frac{9666981736606408222611246545}{95095711555117828699159206100992} a^{30} - \frac{792684464762217849236039051}{932310897599194399011364765696} a^{29} + \frac{3776509980154824485176227601}{2796932692797583197034094297088} a^{28} + \frac{991231811694610691032390474229}{126794282073490438265545608134656} a^{27} - \frac{1419743233517758053587809909967}{190191423110235657398318412201984} a^{26} - \frac{389217338599865810255463165941}{7924642629593152391596600508416} a^{25} + \frac{163873099324473363393333622925}{63397141036745219132772804067328} a^{24} + \frac{23626843745437979365889952194855}{95095711555117828699159206100992} a^{23} + \frac{16379170780041305952300553922989}{63397141036745219132772804067328} a^{22} - \frac{30643988209742607661689418981999}{31698570518372609566386402033664} a^{21} - \frac{125000682581242613497601485871161}{47547855777558914349579603050496} a^{20} + \frac{1113020852071040759576079056392967}{380382846220471314796636824403968} a^{19} + \frac{3005008846211023299312023226307939}{190191423110235657398318412201984} a^{18} - \frac{28810609678747878190473689318623}{3962321314796576195798300254208} a^{17} - \frac{11577031543418779028247072928613735}{190191423110235657398318412201984} a^{16} + \frac{6659902887413078207172578036770159}{380382846220471314796636824403968} a^{15} + \frac{25268200394982357586660559524821971}{190191423110235657398318412201984} a^{14} - \frac{2623129379045932299512595663183163}{95095711555117828699159206100992} a^{13} - \frac{2271658881534620108179115289352629}{15849285259186304783193201016832} a^{12} + \frac{2033582569420434774760692371797}{74760779524463701807515099136} a^{11} + \frac{464448343730734343162312167692421}{5943481972194864293697450381312} a^{10} - \frac{59214493029518640273303198564893}{990580328699144048949575063552} a^{9} - \frac{255403408873581749831009551823}{7283678887493706242276287232} a^{8} + \frac{87795450643314410778669672941}{1451045403367886790453479097} a^{7} - \frac{844333857272749798470419049659}{371467623262179018356090648832} a^{6} - \frac{9400875130023257148110769082211}{185733811631089509178045324416} a^{5} + \frac{417484008346877247147965935805}{30955635271848251529674220736} a^{4} + \frac{2848138562285835296864712607325}{92866905815544754589022662208} a^{3} - \frac{475593885459481042048592501521}{46433452907772377294511331104} a^{2} - \frac{346738523038436140883932360955}{23216726453886188647255665552} a - \frac{6306616162422131411344170487}{3869454408981031441209277592} \) (order $12$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 564327334704.2394 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A solvable group of order 512 |
The 80 conjugacy class representatives for t32n12882 are not computed |
Character table for t32n12882 is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 32 siblings: | data not computed |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
$2$ | 2.8.12.14 | $x^{8} + 12 x^{4} + 144$ | $4$ | $2$ | $12$ | $D_4$ | $[2, 2]^{2}$ |
2.8.12.14 | $x^{8} + 12 x^{4} + 144$ | $4$ | $2$ | $12$ | $D_4$ | $[2, 2]^{2}$ | |
2.8.12.14 | $x^{8} + 12 x^{4} + 144$ | $4$ | $2$ | $12$ | $D_4$ | $[2, 2]^{2}$ | |
2.8.12.14 | $x^{8} + 12 x^{4} + 144$ | $4$ | $2$ | $12$ | $D_4$ | $[2, 2]^{2}$ | |
$3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
5 | Data not computed | ||||||
$13$ | 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
$97$ | 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
97.4.2.1 | $x^{4} + 873 x^{2} + 235225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
97.4.2.1 | $x^{4} + 873 x^{2} + 235225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |