Properties

Label 32.0.131...000.1
Degree $32$
Signature $[0, 16]$
Discriminant $1.319\times 10^{58}$
Root discriminant \(65.50\)
Ramified primes $2,5,7,29,1049$
Class number $456$ (GRH)
Class group [2, 2, 114] (GRH)
Galois group $D_4^2:C_2^3$ (as 32T12882)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^32 - 44*x^30 + 874*x^28 - 10054*x^26 + 71163*x^24 - 296956*x^22 + 554793*x^20 + 537460*x^18 - 3539799*x^16 - 66968*x^14 + 9372831*x^12 + 10803870*x^10 + 6888129*x^8 + 2624028*x^6 + 464976*x^4 + 14784*x^2 + 256)
 
gp: K = bnfinit(y^32 - 44*y^30 + 874*y^28 - 10054*y^26 + 71163*y^24 - 296956*y^22 + 554793*y^20 + 537460*y^18 - 3539799*y^16 - 66968*y^14 + 9372831*y^12 + 10803870*y^10 + 6888129*y^8 + 2624028*y^6 + 464976*y^4 + 14784*y^2 + 256, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^32 - 44*x^30 + 874*x^28 - 10054*x^26 + 71163*x^24 - 296956*x^22 + 554793*x^20 + 537460*x^18 - 3539799*x^16 - 66968*x^14 + 9372831*x^12 + 10803870*x^10 + 6888129*x^8 + 2624028*x^6 + 464976*x^4 + 14784*x^2 + 256);
 
oscar: Qx, x = polynomial_ring(QQ); K, a = number_field(x^32 - 44*x^30 + 874*x^28 - 10054*x^26 + 71163*x^24 - 296956*x^22 + 554793*x^20 + 537460*x^18 - 3539799*x^16 - 66968*x^14 + 9372831*x^12 + 10803870*x^10 + 6888129*x^8 + 2624028*x^6 + 464976*x^4 + 14784*x^2 + 256)
 

\( x^{32} - 44 x^{30} + 874 x^{28} - 10054 x^{26} + 71163 x^{24} - 296956 x^{22} + 554793 x^{20} + \cdots + 256 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $32$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 16]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(13192724911186950673358584730276205272104960000000000000000\) \(\medspace = 2^{32}\cdot 5^{16}\cdot 7^{16}\cdot 29^{8}\cdot 1049^{4}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(65.50\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2\cdot 5^{1/2}7^{1/2}29^{1/2}1049^{1/2}\approx 2063.7199422402255$
Ramified primes:   \(2\), \(5\), \(7\), \(29\), \(1049\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $8$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is a CM field.
Reflex fields:  unavailable$^{32768}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2}a^{11}-\frac{1}{2}a^{9}-\frac{1}{2}a^{5}-\frac{1}{2}a$, $\frac{1}{4}a^{12}+\frac{1}{4}a^{10}-\frac{1}{2}a^{8}-\frac{1}{4}a^{6}-\frac{1}{2}a^{4}+\frac{1}{4}a^{2}$, $\frac{1}{4}a^{13}-\frac{1}{4}a^{11}-\frac{1}{4}a^{7}+\frac{1}{4}a^{3}-\frac{1}{2}a$, $\frac{1}{4}a^{14}+\frac{1}{4}a^{10}+\frac{1}{4}a^{8}-\frac{1}{4}a^{6}-\frac{1}{4}a^{4}-\frac{1}{4}a^{2}$, $\frac{1}{4}a^{15}-\frac{1}{4}a^{11}-\frac{1}{4}a^{9}-\frac{1}{4}a^{7}+\frac{1}{4}a^{5}-\frac{1}{4}a^{3}-\frac{1}{2}a$, $\frac{1}{4}a^{16}+\frac{1}{4}a^{8}+\frac{1}{4}a^{4}-\frac{1}{4}a^{2}$, $\frac{1}{4}a^{17}+\frac{1}{4}a^{9}+\frac{1}{4}a^{5}-\frac{1}{4}a^{3}$, $\frac{1}{4}a^{18}+\frac{1}{4}a^{10}+\frac{1}{4}a^{6}-\frac{1}{4}a^{4}$, $\frac{1}{4}a^{19}-\frac{1}{4}a^{11}-\frac{1}{2}a^{9}+\frac{1}{4}a^{7}+\frac{1}{4}a^{5}-\frac{1}{2}a$, $\frac{1}{4}a^{20}-\frac{1}{4}a^{10}-\frac{1}{4}a^{8}-\frac{1}{2}a^{4}-\frac{1}{4}a^{2}$, $\frac{1}{4}a^{21}-\frac{1}{4}a^{11}-\frac{1}{4}a^{9}-\frac{1}{2}a^{5}-\frac{1}{4}a^{3}$, $\frac{1}{4}a^{22}-\frac{1}{2}a^{8}+\frac{1}{4}a^{6}+\frac{1}{4}a^{4}+\frac{1}{4}a^{2}$, $\frac{1}{8}a^{23}-\frac{1}{8}a^{19}-\frac{1}{8}a^{11}-\frac{1}{4}a^{9}-\frac{1}{2}a^{7}-\frac{1}{4}a^{5}+\frac{1}{8}a^{3}$, $\frac{1}{16}a^{24}-\frac{1}{8}a^{22}+\frac{1}{16}a^{20}-\frac{1}{8}a^{18}-\frac{1}{8}a^{16}-\frac{1}{8}a^{14}-\frac{1}{16}a^{12}-\frac{3}{8}a^{8}-\frac{1}{4}a^{6}-\frac{3}{16}a^{4}$, $\frac{1}{16}a^{25}+\frac{1}{16}a^{21}-\frac{1}{8}a^{17}-\frac{1}{8}a^{15}-\frac{1}{16}a^{13}+\frac{1}{8}a^{11}+\frac{3}{8}a^{9}-\frac{1}{2}a^{7}+\frac{5}{16}a^{5}+\frac{1}{8}a^{3}$, $\frac{1}{16}a^{26}+\frac{1}{16}a^{22}-\frac{1}{8}a^{18}-\frac{1}{8}a^{16}-\frac{1}{16}a^{14}-\frac{1}{8}a^{12}+\frac{1}{8}a^{10}-\frac{7}{16}a^{6}-\frac{3}{8}a^{4}-\frac{1}{4}a^{2}$, $\frac{1}{32}a^{27}-\frac{1}{32}a^{25}-\frac{1}{32}a^{23}-\frac{1}{32}a^{21}-\frac{1}{8}a^{17}-\frac{3}{32}a^{15}+\frac{3}{32}a^{13}+\frac{1}{16}a^{11}-\frac{1}{16}a^{9}+\frac{9}{32}a^{7}+\frac{1}{32}a^{5}-\frac{3}{8}a^{3}$, $\frac{1}{1935808}a^{28}+\frac{20075}{1935808}a^{26}+\frac{8795}{1935808}a^{24}-\frac{219293}{1935808}a^{22}+\frac{6723}{483952}a^{20}+\frac{2241}{483952}a^{18}+\frac{1345}{12992}a^{16}+\frac{135255}{1935808}a^{14}-\frac{4183}{138272}a^{12}-\frac{244157}{967904}a^{10}+\frac{711569}{1935808}a^{8}-\frac{87525}{276544}a^{6}+\frac{668}{4321}a^{4}-\frac{6291}{60494}a^{2}-\frac{5892}{30247}$, $\frac{1}{1935808}a^{29}+\frac{20075}{1935808}a^{27}+\frac{8795}{1935808}a^{25}+\frac{22683}{1935808}a^{23}+\frac{6723}{483952}a^{21}-\frac{58253}{483952}a^{19}+\frac{1345}{12992}a^{17}+\frac{135255}{1935808}a^{15}-\frac{4183}{138272}a^{13}+\frac{118807}{967904}a^{11}-\frac{740287}{1935808}a^{9}+\frac{50747}{276544}a^{7}+\frac{6993}{17284}a^{5}+\frac{5083}{241976}a^{3}+\frac{18463}{60494}a$, $\frac{1}{39\!\cdots\!72}a^{30}+\frac{37\!\cdots\!63}{39\!\cdots\!72}a^{28}-\frac{42\!\cdots\!91}{56\!\cdots\!96}a^{26}-\frac{10\!\cdots\!41}{39\!\cdots\!72}a^{24}+\frac{80\!\cdots\!22}{88\!\cdots\!39}a^{22}-\frac{39\!\cdots\!85}{49\!\cdots\!84}a^{20}+\frac{27\!\cdots\!79}{56\!\cdots\!96}a^{18}-\frac{53\!\cdots\!01}{81\!\cdots\!28}a^{16}+\frac{66\!\cdots\!53}{68\!\cdots\!84}a^{14}-\frac{74\!\cdots\!47}{19\!\cdots\!36}a^{12}+\frac{46\!\cdots\!45}{39\!\cdots\!72}a^{10}+\frac{18\!\cdots\!09}{39\!\cdots\!72}a^{8}-\frac{31\!\cdots\!93}{14\!\cdots\!24}a^{6}-\frac{16\!\cdots\!11}{99\!\cdots\!68}a^{4}-\frac{15\!\cdots\!32}{62\!\cdots\!73}a^{2}-\frac{65\!\cdots\!27}{62\!\cdots\!73}$, $\frac{1}{79\!\cdots\!44}a^{31}-\frac{41\!\cdots\!99}{19\!\cdots\!36}a^{29}-\frac{50\!\cdots\!83}{56\!\cdots\!96}a^{27}+\frac{60\!\cdots\!23}{39\!\cdots\!72}a^{25}+\frac{44\!\cdots\!37}{11\!\cdots\!92}a^{23}+\frac{10\!\cdots\!19}{99\!\cdots\!68}a^{21}-\frac{46\!\cdots\!01}{11\!\cdots\!92}a^{19}-\frac{63\!\cdots\!45}{28\!\cdots\!48}a^{17}+\frac{60\!\cdots\!13}{79\!\cdots\!44}a^{15}+\frac{17\!\cdots\!35}{19\!\cdots\!36}a^{13}-\frac{15\!\cdots\!33}{79\!\cdots\!44}a^{11}-\frac{18\!\cdots\!41}{39\!\cdots\!72}a^{9}+\frac{19\!\cdots\!27}{11\!\cdots\!92}a^{7}+\frac{24\!\cdots\!47}{99\!\cdots\!68}a^{5}+\frac{22\!\cdots\!39}{12\!\cdots\!46}a^{3}-\frac{28\!\cdots\!86}{62\!\cdots\!73}a$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

$C_{2}\times C_{2}\times C_{114}$, which has order $456$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Relative class number: $456$ (assuming GRH)

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $15$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( \frac{1212198436306899677985}{5020023985943106325355968} a^{31} - \frac{13304064985537798123215}{1255005996485776581338992} a^{29} + \frac{5378279244032814706597}{25612367275219930231408} a^{27} - \frac{755085071138638901781819}{313751499121444145334748} a^{25} + \frac{12148111413127701250618927}{717146283706158046479424} a^{23} - \frac{175608202718792884749281523}{2510011992971553162677984} a^{21} + \frac{90781906578874341227807831}{717146283706158046479424} a^{19} + \frac{891152206664961809111701}{6182295549191017642064} a^{17} - \frac{4235793906432875880761439733}{5020023985943106325355968} a^{15} - \frac{259252036904033812748951733}{2510011992971553162677984} a^{13} + \frac{11418936268628627747753300155}{5020023985943106325355968} a^{11} + \frac{245340555604445323655962241}{86552137688674246988896} a^{9} + \frac{46656671613700758856017153}{24729182196764070568256} a^{7} + \frac{1907703902834059885134020843}{2510011992971553162677984} a^{5} + \frac{12206814291498928056218167}{78437874780361036333687} a^{3} + \frac{659169053797579020919973}{78437874780361036333687} a \)  (order $4$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{22\!\cdots\!53}{15\!\cdots\!44}a^{31}-\frac{24\!\cdots\!93}{38\!\cdots\!36}a^{29}+\frac{20\!\cdots\!41}{15\!\cdots\!28}a^{27}-\frac{11\!\cdots\!15}{77\!\cdots\!72}a^{25}+\frac{22\!\cdots\!73}{22\!\cdots\!92}a^{23}-\frac{16\!\cdots\!03}{38\!\cdots\!36}a^{21}+\frac{17\!\cdots\!55}{22\!\cdots\!92}a^{19}+\frac{16\!\cdots\!61}{19\!\cdots\!12}a^{17}-\frac{79\!\cdots\!47}{15\!\cdots\!44}a^{15}-\frac{95\!\cdots\!19}{19\!\cdots\!68}a^{13}+\frac{21\!\cdots\!63}{15\!\cdots\!44}a^{11}+\frac{45\!\cdots\!23}{26\!\cdots\!68}a^{9}+\frac{86\!\cdots\!43}{76\!\cdots\!48}a^{7}+\frac{17\!\cdots\!51}{38\!\cdots\!36}a^{5}+\frac{93\!\cdots\!41}{97\!\cdots\!84}a^{3}+\frac{63\!\cdots\!53}{12\!\cdots\!23}a$, $\frac{14\!\cdots\!43}{29\!\cdots\!44}a^{30}-\frac{12\!\cdots\!55}{58\!\cdots\!88}a^{28}+\frac{35\!\cdots\!57}{83\!\cdots\!84}a^{26}-\frac{28\!\cdots\!97}{58\!\cdots\!88}a^{24}+\frac{29\!\cdots\!87}{83\!\cdots\!84}a^{22}-\frac{10\!\cdots\!67}{73\!\cdots\!36}a^{20}+\frac{12\!\cdots\!75}{41\!\cdots\!92}a^{18}+\frac{17\!\cdots\!91}{83\!\cdots\!84}a^{16}-\frac{35\!\cdots\!19}{20\!\cdots\!72}a^{14}+\frac{88\!\cdots\!97}{29\!\cdots\!44}a^{12}+\frac{16\!\cdots\!57}{36\!\cdots\!68}a^{10}+\frac{24\!\cdots\!57}{58\!\cdots\!88}a^{8}+\frac{19\!\cdots\!01}{83\!\cdots\!84}a^{6}+\frac{10\!\cdots\!37}{14\!\cdots\!72}a^{4}+\frac{84\!\cdots\!05}{36\!\cdots\!68}a^{2}-\frac{39\!\cdots\!29}{91\!\cdots\!67}$, $\frac{27\!\cdots\!89}{79\!\cdots\!44}a^{31}-\frac{60\!\cdots\!17}{39\!\cdots\!72}a^{29}+\frac{61\!\cdots\!63}{20\!\cdots\!32}a^{27}-\frac{17\!\cdots\!79}{49\!\cdots\!84}a^{25}+\frac{28\!\cdots\!43}{11\!\cdots\!92}a^{23}-\frac{20\!\cdots\!65}{19\!\cdots\!36}a^{21}+\frac{22\!\cdots\!47}{11\!\cdots\!92}a^{19}+\frac{10\!\cdots\!93}{56\!\cdots\!96}a^{17}-\frac{98\!\cdots\!13}{79\!\cdots\!44}a^{15}-\frac{16\!\cdots\!39}{19\!\cdots\!36}a^{13}+\frac{25\!\cdots\!67}{79\!\cdots\!44}a^{11}+\frac{92\!\cdots\!01}{24\!\cdots\!92}a^{9}+\frac{27\!\cdots\!05}{11\!\cdots\!92}a^{7}+\frac{18\!\cdots\!83}{19\!\cdots\!36}a^{5}+\frac{43\!\cdots\!29}{24\!\cdots\!92}a^{3}+\frac{57\!\cdots\!14}{62\!\cdots\!73}a$, $\frac{67\!\cdots\!49}{76\!\cdots\!08}a^{31}-\frac{35\!\cdots\!51}{14\!\cdots\!12}a^{30}-\frac{36\!\cdots\!53}{95\!\cdots\!76}a^{29}+\frac{78\!\cdots\!91}{72\!\cdots\!56}a^{28}+\frac{41\!\cdots\!39}{54\!\cdots\!72}a^{27}-\frac{11\!\cdots\!47}{51\!\cdots\!04}a^{26}-\frac{33\!\cdots\!55}{38\!\cdots\!04}a^{25}+\frac{11\!\cdots\!63}{45\!\cdots\!66}a^{24}+\frac{68\!\cdots\!61}{10\!\cdots\!44}a^{23}-\frac{36\!\cdots\!65}{20\!\cdots\!16}a^{22}-\frac{12\!\cdots\!77}{47\!\cdots\!88}a^{21}+\frac{27\!\cdots\!79}{36\!\cdots\!28}a^{20}+\frac{53\!\cdots\!79}{10\!\cdots\!44}a^{19}-\frac{29\!\cdots\!25}{20\!\cdots\!16}a^{18}+\frac{21\!\cdots\!55}{46\!\cdots\!92}a^{17}-\frac{11\!\cdots\!11}{10\!\cdots\!08}a^{16}-\frac{23\!\cdots\!79}{76\!\cdots\!08}a^{15}+\frac{12\!\cdots\!55}{14\!\cdots\!12}a^{14}+\frac{50\!\cdots\!07}{19\!\cdots\!52}a^{13}-\frac{27\!\cdots\!17}{36\!\cdots\!28}a^{12}+\frac{63\!\cdots\!51}{76\!\cdots\!08}a^{11}-\frac{32\!\cdots\!29}{14\!\cdots\!12}a^{10}+\frac{12\!\cdots\!33}{13\!\cdots\!76}a^{9}-\frac{21\!\cdots\!07}{90\!\cdots\!32}a^{8}+\frac{21\!\cdots\!39}{37\!\cdots\!36}a^{7}-\frac{30\!\cdots\!71}{20\!\cdots\!16}a^{6}+\frac{98\!\cdots\!07}{47\!\cdots\!88}a^{5}-\frac{19\!\cdots\!59}{36\!\cdots\!28}a^{4}+\frac{14\!\cdots\!07}{47\!\cdots\!88}a^{3}-\frac{19\!\cdots\!11}{22\!\cdots\!83}a^{2}-\frac{24\!\cdots\!20}{59\!\cdots\!11}a-\frac{59\!\cdots\!94}{22\!\cdots\!83}$, $\frac{26\!\cdots\!65}{39\!\cdots\!72}a^{31}-\frac{62\!\cdots\!47}{12\!\cdots\!68}a^{30}-\frac{11\!\cdots\!05}{39\!\cdots\!72}a^{29}+\frac{27\!\cdots\!97}{12\!\cdots\!68}a^{28}+\frac{47\!\cdots\!67}{81\!\cdots\!28}a^{27}-\frac{77\!\cdots\!53}{17\!\cdots\!24}a^{26}-\frac{26\!\cdots\!09}{39\!\cdots\!72}a^{25}+\frac{61\!\cdots\!41}{12\!\cdots\!68}a^{24}+\frac{68\!\cdots\!51}{14\!\cdots\!24}a^{23}-\frac{30\!\cdots\!61}{88\!\cdots\!12}a^{22}-\frac{10\!\cdots\!71}{49\!\cdots\!84}a^{21}+\frac{43\!\cdots\!29}{30\!\cdots\!92}a^{20}+\frac{22\!\cdots\!31}{56\!\cdots\!96}a^{19}-\frac{40\!\cdots\!17}{17\!\cdots\!24}a^{18}+\frac{18\!\cdots\!01}{56\!\cdots\!96}a^{17}-\frac{68\!\cdots\!01}{17\!\cdots\!24}a^{16}-\frac{47\!\cdots\!57}{19\!\cdots\!36}a^{15}+\frac{55\!\cdots\!57}{30\!\cdots\!92}a^{14}+\frac{32\!\cdots\!81}{19\!\cdots\!36}a^{13}+\frac{34\!\cdots\!13}{61\!\cdots\!84}a^{12}+\frac{24\!\cdots\!57}{39\!\cdots\!72}a^{11}-\frac{64\!\cdots\!27}{12\!\cdots\!68}a^{10}+\frac{26\!\cdots\!21}{39\!\cdots\!72}a^{9}-\frac{81\!\cdots\!65}{12\!\cdots\!68}a^{8}+\frac{74\!\cdots\!77}{17\!\cdots\!78}a^{7}-\frac{35\!\cdots\!09}{88\!\cdots\!12}a^{6}+\frac{15\!\cdots\!63}{99\!\cdots\!68}a^{5}-\frac{12\!\cdots\!11}{77\!\cdots\!48}a^{4}+\frac{12\!\cdots\!87}{49\!\cdots\!84}a^{3}-\frac{18\!\cdots\!99}{77\!\cdots\!48}a^{2}+\frac{44\!\cdots\!70}{62\!\cdots\!73}a+\frac{44\!\cdots\!24}{19\!\cdots\!37}$, $\frac{27\!\cdots\!03}{99\!\cdots\!68}a^{31}-\frac{92\!\cdots\!91}{17\!\cdots\!24}a^{30}-\frac{29\!\cdots\!13}{24\!\cdots\!92}a^{29}+\frac{40\!\cdots\!39}{17\!\cdots\!24}a^{28}+\frac{97\!\cdots\!39}{40\!\cdots\!64}a^{27}-\frac{11\!\cdots\!79}{25\!\cdots\!32}a^{26}-\frac{54\!\cdots\!13}{19\!\cdots\!36}a^{25}+\frac{93\!\cdots\!31}{17\!\cdots\!24}a^{24}+\frac{55\!\cdots\!73}{28\!\cdots\!48}a^{23}-\frac{23\!\cdots\!35}{62\!\cdots\!08}a^{22}-\frac{16\!\cdots\!17}{19\!\cdots\!36}a^{21}+\frac{68\!\cdots\!15}{44\!\cdots\!56}a^{20}+\frac{22\!\cdots\!71}{14\!\cdots\!24}a^{19}-\frac{71\!\cdots\!37}{25\!\cdots\!32}a^{18}+\frac{48\!\cdots\!25}{35\!\cdots\!56}a^{17}-\frac{74\!\cdots\!59}{25\!\cdots\!32}a^{16}-\frac{19\!\cdots\!55}{19\!\cdots\!36}a^{15}+\frac{16\!\cdots\!23}{88\!\cdots\!12}a^{14}+\frac{81\!\cdots\!51}{19\!\cdots\!36}a^{13}+\frac{97\!\cdots\!63}{88\!\cdots\!12}a^{12}+\frac{63\!\cdots\!81}{24\!\cdots\!92}a^{11}-\frac{87\!\cdots\!35}{17\!\cdots\!24}a^{10}+\frac{27\!\cdots\!73}{99\!\cdots\!68}a^{9}-\frac{10\!\cdots\!63}{17\!\cdots\!24}a^{8}+\frac{48\!\cdots\!27}{28\!\cdots\!48}a^{7}-\frac{11\!\cdots\!83}{31\!\cdots\!04}a^{6}+\frac{12\!\cdots\!85}{19\!\cdots\!36}a^{5}-\frac{16\!\cdots\!05}{11\!\cdots\!64}a^{4}+\frac{44\!\cdots\!71}{49\!\cdots\!84}a^{3}-\frac{29\!\cdots\!27}{11\!\cdots\!64}a^{2}-\frac{23\!\cdots\!39}{12\!\cdots\!46}a-\frac{24\!\cdots\!12}{27\!\cdots\!91}$, $\frac{83\!\cdots\!71}{40\!\cdots\!64}a^{31}+\frac{18\!\cdots\!93}{61\!\cdots\!84}a^{30}-\frac{36\!\cdots\!53}{40\!\cdots\!64}a^{29}-\frac{39\!\cdots\!23}{30\!\cdots\!92}a^{28}+\frac{36\!\cdots\!27}{20\!\cdots\!32}a^{27}+\frac{28\!\cdots\!25}{11\!\cdots\!64}a^{26}-\frac{21\!\cdots\!35}{10\!\cdots\!16}a^{25}-\frac{57\!\cdots\!28}{19\!\cdots\!37}a^{24}+\frac{59\!\cdots\!67}{40\!\cdots\!64}a^{23}+\frac{18\!\cdots\!67}{88\!\cdots\!12}a^{22}-\frac{24\!\cdots\!91}{40\!\cdots\!64}a^{21}-\frac{67\!\cdots\!11}{77\!\cdots\!48}a^{20}+\frac{46\!\cdots\!87}{40\!\cdots\!64}a^{19}+\frac{14\!\cdots\!35}{88\!\cdots\!12}a^{18}+\frac{45\!\cdots\!35}{40\!\cdots\!64}a^{17}+\frac{67\!\cdots\!87}{44\!\cdots\!56}a^{16}-\frac{29\!\cdots\!01}{40\!\cdots\!64}a^{15}-\frac{64\!\cdots\!85}{61\!\cdots\!84}a^{14}-\frac{71\!\cdots\!97}{40\!\cdots\!64}a^{13}+\frac{23\!\cdots\!99}{77\!\cdots\!48}a^{12}+\frac{78\!\cdots\!45}{40\!\cdots\!64}a^{11}+\frac{16\!\cdots\!63}{61\!\cdots\!84}a^{10}+\frac{90\!\cdots\!55}{40\!\cdots\!64}a^{9}+\frac{48\!\cdots\!17}{15\!\cdots\!96}a^{8}+\frac{58\!\cdots\!37}{40\!\cdots\!64}a^{7}+\frac{17\!\cdots\!05}{88\!\cdots\!12}a^{6}+\frac{22\!\cdots\!11}{40\!\cdots\!64}a^{5}+\frac{28\!\cdots\!79}{38\!\cdots\!74}a^{4}+\frac{12\!\cdots\!06}{12\!\cdots\!77}a^{3}+\frac{44\!\cdots\!03}{38\!\cdots\!74}a^{2}+\frac{29\!\cdots\!93}{12\!\cdots\!77}a+\frac{27\!\cdots\!28}{19\!\cdots\!37}$, $\frac{13\!\cdots\!39}{79\!\cdots\!44}a^{31}+\frac{11\!\cdots\!57}{12\!\cdots\!68}a^{30}-\frac{83\!\cdots\!09}{99\!\cdots\!68}a^{29}-\frac{30\!\cdots\!41}{61\!\cdots\!84}a^{28}+\frac{14\!\cdots\!79}{81\!\cdots\!28}a^{27}+\frac{52\!\cdots\!31}{44\!\cdots\!56}a^{26}-\frac{92\!\cdots\!53}{39\!\cdots\!72}a^{25}-\frac{26\!\cdots\!77}{15\!\cdots\!96}a^{24}+\frac{21\!\cdots\!51}{11\!\cdots\!92}a^{23}+\frac{27\!\cdots\!11}{17\!\cdots\!24}a^{22}-\frac{98\!\cdots\!77}{99\!\cdots\!68}a^{21}-\frac{29\!\cdots\!53}{30\!\cdots\!92}a^{20}+\frac{33\!\cdots\!81}{11\!\cdots\!92}a^{19}+\frac{60\!\cdots\!15}{17\!\cdots\!24}a^{18}-\frac{40\!\cdots\!73}{14\!\cdots\!24}a^{17}-\frac{51\!\cdots\!43}{88\!\cdots\!12}a^{16}-\frac{74\!\cdots\!21}{79\!\cdots\!44}a^{15}-\frac{62\!\cdots\!49}{12\!\cdots\!68}a^{14}+\frac{46\!\cdots\!43}{19\!\cdots\!36}a^{13}+\frac{98\!\cdots\!75}{30\!\cdots\!92}a^{12}+\frac{10\!\cdots\!05}{79\!\cdots\!44}a^{11}-\frac{67\!\cdots\!97}{12\!\cdots\!68}a^{10}-\frac{16\!\cdots\!81}{39\!\cdots\!72}a^{9}-\frac{10\!\cdots\!87}{15\!\cdots\!96}a^{8}-\frac{53\!\cdots\!27}{11\!\cdots\!92}a^{7}-\frac{95\!\cdots\!87}{17\!\cdots\!24}a^{6}-\frac{27\!\cdots\!67}{99\!\cdots\!68}a^{5}-\frac{92\!\cdots\!99}{30\!\cdots\!92}a^{4}-\frac{16\!\cdots\!69}{17\!\cdots\!96}a^{3}-\frac{13\!\cdots\!36}{19\!\cdots\!37}a^{2}-\frac{33\!\cdots\!48}{62\!\cdots\!73}a-\frac{24\!\cdots\!76}{19\!\cdots\!37}$, $\frac{12\!\cdots\!35}{79\!\cdots\!44}a^{31}+\frac{57\!\cdots\!27}{19\!\cdots\!36}a^{30}-\frac{28\!\cdots\!77}{39\!\cdots\!72}a^{29}-\frac{63\!\cdots\!15}{49\!\cdots\!84}a^{28}+\frac{99\!\cdots\!31}{71\!\cdots\!12}a^{27}+\frac{36\!\cdots\!99}{14\!\cdots\!24}a^{26}-\frac{80\!\cdots\!83}{49\!\cdots\!84}a^{25}-\frac{29\!\cdots\!41}{99\!\cdots\!68}a^{24}+\frac{13\!\cdots\!53}{11\!\cdots\!92}a^{23}+\frac{58\!\cdots\!63}{28\!\cdots\!48}a^{22}-\frac{23\!\cdots\!49}{49\!\cdots\!84}a^{21}-\frac{43\!\cdots\!89}{49\!\cdots\!84}a^{20}+\frac{10\!\cdots\!17}{11\!\cdots\!92}a^{19}+\frac{46\!\cdots\!05}{28\!\cdots\!48}a^{18}+\frac{47\!\cdots\!01}{56\!\cdots\!96}a^{17}+\frac{11\!\cdots\!37}{71\!\cdots\!12}a^{16}-\frac{45\!\cdots\!27}{79\!\cdots\!44}a^{15}-\frac{20\!\cdots\!05}{19\!\cdots\!36}a^{14}+\frac{43\!\cdots\!21}{62\!\cdots\!73}a^{13}-\frac{29\!\cdots\!57}{24\!\cdots\!92}a^{12}+\frac{11\!\cdots\!73}{79\!\cdots\!44}a^{11}+\frac{54\!\cdots\!25}{19\!\cdots\!36}a^{10}+\frac{33\!\cdots\!17}{19\!\cdots\!36}a^{9}+\frac{31\!\cdots\!57}{99\!\cdots\!68}a^{8}+\frac{11\!\cdots\!55}{11\!\cdots\!92}a^{7}+\frac{56\!\cdots\!81}{28\!\cdots\!48}a^{6}+\frac{38\!\cdots\!95}{99\!\cdots\!68}a^{5}+\frac{37\!\cdots\!93}{49\!\cdots\!84}a^{4}+\frac{30\!\cdots\!73}{49\!\cdots\!84}a^{3}+\frac{31\!\cdots\!81}{24\!\cdots\!92}a^{2}+\frac{10\!\cdots\!11}{62\!\cdots\!73}a+\frac{18\!\cdots\!89}{62\!\cdots\!73}$, $\frac{41\!\cdots\!97}{11\!\cdots\!92}a^{31}+\frac{28\!\cdots\!71}{58\!\cdots\!88}a^{30}-\frac{45\!\cdots\!47}{28\!\cdots\!48}a^{29}-\frac{12\!\cdots\!09}{58\!\cdots\!88}a^{28}+\frac{18\!\cdots\!79}{56\!\cdots\!96}a^{27}+\frac{35\!\cdots\!13}{83\!\cdots\!84}a^{26}-\frac{20\!\cdots\!85}{56\!\cdots\!96}a^{25}-\frac{28\!\cdots\!25}{58\!\cdots\!88}a^{24}+\frac{29\!\cdots\!99}{11\!\cdots\!92}a^{23}+\frac{14\!\cdots\!53}{41\!\cdots\!92}a^{22}-\frac{15\!\cdots\!61}{14\!\cdots\!24}a^{21}-\frac{21\!\cdots\!11}{14\!\cdots\!72}a^{20}+\frac{23\!\cdots\!81}{11\!\cdots\!92}a^{19}+\frac{23\!\cdots\!73}{83\!\cdots\!84}a^{18}+\frac{54\!\cdots\!97}{28\!\cdots\!48}a^{17}+\frac{18\!\cdots\!13}{83\!\cdots\!84}a^{16}-\frac{14\!\cdots\!91}{11\!\cdots\!92}a^{15}-\frac{88\!\cdots\!41}{50\!\cdots\!68}a^{14}+\frac{56\!\cdots\!11}{28\!\cdots\!48}a^{13}+\frac{59\!\cdots\!75}{29\!\cdots\!44}a^{12}+\frac{39\!\cdots\!03}{11\!\cdots\!92}a^{11}+\frac{26\!\cdots\!75}{58\!\cdots\!88}a^{10}+\frac{22\!\cdots\!43}{56\!\cdots\!96}a^{9}+\frac{26\!\cdots\!65}{58\!\cdots\!88}a^{8}+\frac{39\!\cdots\!03}{16\!\cdots\!56}a^{7}+\frac{10\!\cdots\!53}{41\!\cdots\!92}a^{6}+\frac{12\!\cdots\!53}{14\!\cdots\!24}a^{5}+\frac{54\!\cdots\!73}{73\!\cdots\!36}a^{4}+\frac{10\!\cdots\!41}{71\!\cdots\!12}a^{3}+\frac{90\!\cdots\!85}{36\!\cdots\!68}a^{2}+\frac{14\!\cdots\!55}{88\!\cdots\!39}a-\frac{27\!\cdots\!75}{91\!\cdots\!67}$, $\frac{49\!\cdots\!15}{99\!\cdots\!68}a^{31}-\frac{17\!\cdots\!67}{58\!\cdots\!88}a^{30}-\frac{21\!\cdots\!37}{99\!\cdots\!68}a^{29}+\frac{99\!\cdots\!99}{73\!\cdots\!36}a^{28}+\frac{62\!\cdots\!75}{14\!\cdots\!24}a^{27}-\frac{11\!\cdots\!13}{41\!\cdots\!92}a^{26}-\frac{62\!\cdots\!41}{12\!\cdots\!46}a^{25}+\frac{93\!\cdots\!01}{29\!\cdots\!44}a^{24}+\frac{88\!\cdots\!75}{24\!\cdots\!28}a^{23}-\frac{19\!\cdots\!55}{83\!\cdots\!84}a^{22}-\frac{15\!\cdots\!39}{99\!\cdots\!68}a^{21}+\frac{72\!\cdots\!05}{73\!\cdots\!36}a^{20}+\frac{41\!\cdots\!11}{14\!\cdots\!24}a^{19}-\frac{17\!\cdots\!13}{83\!\cdots\!84}a^{18}+\frac{47\!\cdots\!17}{20\!\cdots\!32}a^{17}-\frac{10\!\cdots\!31}{10\!\cdots\!48}a^{16}-\frac{44\!\cdots\!07}{24\!\cdots\!92}a^{15}+\frac{23\!\cdots\!61}{20\!\cdots\!72}a^{14}+\frac{15\!\cdots\!57}{99\!\cdots\!68}a^{13}-\frac{60\!\cdots\!75}{14\!\cdots\!72}a^{12}+\frac{45\!\cdots\!95}{99\!\cdots\!68}a^{11}-\frac{16\!\cdots\!37}{58\!\cdots\!88}a^{10}+\frac{48\!\cdots\!19}{99\!\cdots\!68}a^{9}-\frac{63\!\cdots\!79}{29\!\cdots\!44}a^{8}+\frac{53\!\cdots\!89}{17\!\cdots\!78}a^{7}-\frac{90\!\cdots\!97}{83\!\cdots\!84}a^{6}+\frac{37\!\cdots\!13}{34\!\cdots\!92}a^{5}-\frac{25\!\cdots\!93}{73\!\cdots\!36}a^{4}+\frac{42\!\cdots\!69}{24\!\cdots\!92}a^{3}-\frac{42\!\cdots\!31}{36\!\cdots\!68}a^{2}+\frac{11\!\cdots\!32}{62\!\cdots\!73}a+\frac{59\!\cdots\!21}{91\!\cdots\!67}$, $\frac{25\!\cdots\!33}{11\!\cdots\!92}a^{31}-\frac{98\!\cdots\!31}{19\!\cdots\!36}a^{30}-\frac{35\!\cdots\!07}{35\!\cdots\!56}a^{29}+\frac{43\!\cdots\!47}{19\!\cdots\!36}a^{28}+\frac{15\!\cdots\!65}{81\!\cdots\!28}a^{27}-\frac{17\!\cdots\!99}{40\!\cdots\!64}a^{26}-\frac{12\!\cdots\!69}{56\!\cdots\!96}a^{25}+\frac{99\!\cdots\!37}{19\!\cdots\!36}a^{24}+\frac{25\!\cdots\!65}{16\!\cdots\!56}a^{23}-\frac{50\!\cdots\!83}{14\!\cdots\!24}a^{22}-\frac{18\!\cdots\!17}{28\!\cdots\!48}a^{21}+\frac{14\!\cdots\!77}{99\!\cdots\!68}a^{20}+\frac{20\!\cdots\!67}{16\!\cdots\!56}a^{19}-\frac{79\!\cdots\!73}{28\!\cdots\!48}a^{18}+\frac{12\!\cdots\!93}{10\!\cdots\!16}a^{17}-\frac{71\!\cdots\!23}{28\!\cdots\!48}a^{16}-\frac{90\!\cdots\!55}{11\!\cdots\!92}a^{15}+\frac{87\!\cdots\!55}{49\!\cdots\!84}a^{14}-\frac{48\!\cdots\!13}{14\!\cdots\!24}a^{13}-\frac{25\!\cdots\!99}{49\!\cdots\!84}a^{12}+\frac{24\!\cdots\!83}{11\!\cdots\!92}a^{11}-\frac{91\!\cdots\!35}{19\!\cdots\!36}a^{10}+\frac{14\!\cdots\!89}{56\!\cdots\!96}a^{9}-\frac{10\!\cdots\!47}{19\!\cdots\!36}a^{8}+\frac{25\!\cdots\!63}{16\!\cdots\!56}a^{7}-\frac{45\!\cdots\!99}{14\!\cdots\!24}a^{6}+\frac{16\!\cdots\!57}{28\!\cdots\!48}a^{5}-\frac{11\!\cdots\!11}{99\!\cdots\!68}a^{4}+\frac{19\!\cdots\!89}{17\!\cdots\!78}a^{3}-\frac{47\!\cdots\!63}{24\!\cdots\!92}a^{2}+\frac{10\!\cdots\!93}{17\!\cdots\!78}a-\frac{21\!\cdots\!97}{62\!\cdots\!73}$, $\frac{36\!\cdots\!21}{39\!\cdots\!72}a^{31}+\frac{25\!\cdots\!91}{39\!\cdots\!72}a^{30}-\frac{15\!\cdots\!79}{39\!\cdots\!72}a^{29}-\frac{11\!\cdots\!05}{39\!\cdots\!72}a^{28}+\frac{45\!\cdots\!03}{56\!\cdots\!96}a^{27}+\frac{33\!\cdots\!61}{56\!\cdots\!96}a^{26}-\frac{36\!\cdots\!59}{39\!\cdots\!72}a^{25}-\frac{27\!\cdots\!77}{39\!\cdots\!72}a^{24}+\frac{26\!\cdots\!31}{40\!\cdots\!64}a^{23}+\frac{21\!\cdots\!67}{40\!\cdots\!64}a^{22}-\frac{27\!\cdots\!15}{99\!\cdots\!68}a^{21}-\frac{23\!\cdots\!73}{99\!\cdots\!68}a^{20}+\frac{29\!\cdots\!03}{56\!\cdots\!96}a^{19}+\frac{32\!\cdots\!41}{56\!\cdots\!96}a^{18}+\frac{25\!\cdots\!19}{56\!\cdots\!96}a^{17}-\frac{73\!\cdots\!59}{56\!\cdots\!96}a^{16}-\frac{16\!\cdots\!59}{49\!\cdots\!84}a^{15}-\frac{24\!\cdots\!65}{99\!\cdots\!68}a^{14}+\frac{26\!\cdots\!25}{19\!\cdots\!36}a^{13}+\frac{49\!\cdots\!91}{19\!\cdots\!36}a^{12}+\frac{33\!\cdots\!93}{39\!\cdots\!72}a^{11}+\frac{19\!\cdots\!03}{39\!\cdots\!72}a^{10}+\frac{37\!\cdots\!23}{39\!\cdots\!72}a^{9}+\frac{22\!\cdots\!01}{39\!\cdots\!72}a^{8}+\frac{16\!\cdots\!21}{28\!\cdots\!48}a^{7}-\frac{23\!\cdots\!99}{28\!\cdots\!48}a^{6}+\frac{10\!\cdots\!67}{49\!\cdots\!84}a^{5}-\frac{13\!\cdots\!47}{12\!\cdots\!46}a^{4}+\frac{82\!\cdots\!75}{21\!\cdots\!37}a^{3}-\frac{10\!\cdots\!43}{24\!\cdots\!92}a^{2}+\frac{10\!\cdots\!27}{12\!\cdots\!46}a-\frac{55\!\cdots\!96}{62\!\cdots\!73}$, $\frac{97\!\cdots\!23}{56\!\cdots\!96}a^{31}-\frac{17\!\cdots\!17}{17\!\cdots\!78}a^{30}-\frac{43\!\cdots\!03}{56\!\cdots\!96}a^{29}+\frac{24\!\cdots\!21}{56\!\cdots\!96}a^{28}+\frac{86\!\cdots\!27}{56\!\cdots\!96}a^{27}-\frac{46\!\cdots\!69}{56\!\cdots\!96}a^{26}-\frac{14\!\cdots\!23}{81\!\cdots\!28}a^{25}+\frac{50\!\cdots\!31}{56\!\cdots\!96}a^{24}+\frac{35\!\cdots\!91}{28\!\cdots\!48}a^{23}-\frac{32\!\cdots\!57}{56\!\cdots\!96}a^{22}-\frac{15\!\cdots\!31}{28\!\cdots\!48}a^{21}+\frac{35\!\cdots\!61}{17\!\cdots\!78}a^{20}+\frac{59\!\cdots\!31}{56\!\cdots\!96}a^{19}-\frac{20\!\cdots\!67}{14\!\cdots\!24}a^{18}+\frac{42\!\cdots\!41}{56\!\cdots\!96}a^{17}-\frac{78\!\cdots\!75}{56\!\cdots\!96}a^{16}-\frac{43\!\cdots\!57}{71\!\cdots\!12}a^{15}+\frac{25\!\cdots\!77}{81\!\cdots\!28}a^{14}+\frac{77\!\cdots\!84}{88\!\cdots\!39}a^{13}+\frac{13\!\cdots\!97}{28\!\cdots\!48}a^{12}+\frac{90\!\cdots\!51}{56\!\cdots\!96}a^{11}-\frac{31\!\cdots\!49}{28\!\cdots\!48}a^{10}+\frac{91\!\cdots\!87}{56\!\cdots\!96}a^{9}-\frac{18\!\cdots\!85}{81\!\cdots\!28}a^{8}+\frac{38\!\cdots\!05}{40\!\cdots\!64}a^{7}-\frac{13\!\cdots\!65}{81\!\cdots\!28}a^{6}+\frac{89\!\cdots\!57}{28\!\cdots\!48}a^{5}-\frac{11\!\cdots\!89}{14\!\cdots\!24}a^{4}+\frac{26\!\cdots\!23}{71\!\cdots\!12}a^{3}-\frac{32\!\cdots\!69}{17\!\cdots\!78}a^{2}-\frac{48\!\cdots\!49}{17\!\cdots\!78}a-\frac{10\!\cdots\!30}{12\!\cdots\!77}$, $\frac{96\!\cdots\!83}{99\!\cdots\!68}a^{30}-\frac{84\!\cdots\!61}{19\!\cdots\!36}a^{28}+\frac{24\!\cdots\!71}{28\!\cdots\!48}a^{26}-\frac{19\!\cdots\!77}{19\!\cdots\!36}a^{24}+\frac{19\!\cdots\!97}{28\!\cdots\!48}a^{22}-\frac{29\!\cdots\!25}{99\!\cdots\!68}a^{20}+\frac{80\!\cdots\!01}{14\!\cdots\!24}a^{18}+\frac{13\!\cdots\!61}{28\!\cdots\!48}a^{16}-\frac{68\!\cdots\!09}{19\!\cdots\!36}a^{14}+\frac{68\!\cdots\!37}{24\!\cdots\!92}a^{12}+\frac{44\!\cdots\!95}{49\!\cdots\!84}a^{10}+\frac{19\!\cdots\!99}{19\!\cdots\!36}a^{8}+\frac{16\!\cdots\!79}{28\!\cdots\!48}a^{6}+\frac{21\!\cdots\!49}{99\!\cdots\!68}a^{4}+\frac{83\!\cdots\!29}{24\!\cdots\!92}a^{2}+\frac{37\!\cdots\!64}{62\!\cdots\!73}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 37277164025166.29 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{16}\cdot 37277164025166.29 \cdot 456}{4\cdot\sqrt{13192724911186950673358584730276205272104960000000000000000}}\cr\approx \mathstrut & 0.218302322576636 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^32 - 44*x^30 + 874*x^28 - 10054*x^26 + 71163*x^24 - 296956*x^22 + 554793*x^20 + 537460*x^18 - 3539799*x^16 - 66968*x^14 + 9372831*x^12 + 10803870*x^10 + 6888129*x^8 + 2624028*x^6 + 464976*x^4 + 14784*x^2 + 256)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^32 - 44*x^30 + 874*x^28 - 10054*x^26 + 71163*x^24 - 296956*x^22 + 554793*x^20 + 537460*x^18 - 3539799*x^16 - 66968*x^14 + 9372831*x^12 + 10803870*x^10 + 6888129*x^8 + 2624028*x^6 + 464976*x^4 + 14784*x^2 + 256, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^32 - 44*x^30 + 874*x^28 - 10054*x^26 + 71163*x^24 - 296956*x^22 + 554793*x^20 + 537460*x^18 - 3539799*x^16 - 66968*x^14 + 9372831*x^12 + 10803870*x^10 + 6888129*x^8 + 2624028*x^6 + 464976*x^4 + 14784*x^2 + 256);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^32 - 44*x^30 + 874*x^28 - 10054*x^26 + 71163*x^24 - 296956*x^22 + 554793*x^20 + 537460*x^18 - 3539799*x^16 - 66968*x^14 + 9372831*x^12 + 10803870*x^10 + 6888129*x^8 + 2624028*x^6 + 464976*x^4 + 14784*x^2 + 256);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$D_4^2:C_2^3$ (as 32T12882):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 512
The 80 conjugacy class representatives for $D_4^2:C_2^3$
Character table for $D_4^2:C_2^3$

Intermediate fields

\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{7}) \), \(\Q(\sqrt{-35}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{35}) \), \(\Q(\sqrt{-5}) \), 4.4.725.1, 4.0.35525.3, 4.4.568400.1, 4.0.11600.1, \(\Q(\sqrt{-5}, \sqrt{-7})\), \(\Q(i, \sqrt{7})\), \(\Q(\sqrt{5}, \sqrt{-7})\), \(\Q(i, \sqrt{35})\), \(\Q(\sqrt{5}, \sqrt{7})\), \(\Q(i, \sqrt{5})\), \(\Q(\sqrt{-5}, \sqrt{7})\), 8.8.1323864880625.1, 8.0.551380625.1, 8.8.141153440000.2, 8.0.338909409440000.1, 8.0.384160000.1, 8.0.1262025625.3, 8.0.323078560000.41, 8.8.323078560000.1, 8.0.323078560000.2, 8.0.323078560000.13, 8.0.134560000.4, 16.0.104379755931673600000000.1, 16.0.1752618222152245500390625.1, 16.0.114859587806969561113600000000.1, 16.16.114859587806969561113600000000.1, 16.0.114859587806969561113600000000.2, 16.0.114859587806969561113600000000.3, 16.0.19924293623833600000000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 32 siblings: data not computed
Minimal sibling: not computed

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.8.0.1}{8} }^{4}$ R R ${\href{/padicField/11.2.0.1}{2} }^{16}$ ${\href{/padicField/13.4.0.1}{4} }^{8}$ ${\href{/padicField/17.8.0.1}{8} }^{4}$ ${\href{/padicField/19.4.0.1}{4} }^{4}{,}\,{\href{/padicField/19.2.0.1}{2} }^{8}$ ${\href{/padicField/23.4.0.1}{4} }^{4}{,}\,{\href{/padicField/23.2.0.1}{2} }^{8}$ R ${\href{/padicField/31.2.0.1}{2} }^{16}$ ${\href{/padicField/37.8.0.1}{8} }^{4}$ ${\href{/padicField/41.4.0.1}{4} }^{4}{,}\,{\href{/padicField/41.2.0.1}{2} }^{8}$ ${\href{/padicField/43.4.0.1}{4} }^{8}$ ${\href{/padicField/47.8.0.1}{8} }^{4}$ ${\href{/padicField/53.4.0.1}{4} }^{8}$ ${\href{/padicField/59.4.0.1}{4} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.8.8.1$x^{8} + 8 x^{7} + 32 x^{6} + 82 x^{5} + 148 x^{4} + 184 x^{3} + 137 x^{2} + 44 x + 5$$2$$4$$8$$C_4\times C_2$$[2]^{4}$
2.8.8.1$x^{8} + 8 x^{7} + 32 x^{6} + 82 x^{5} + 148 x^{4} + 184 x^{3} + 137 x^{2} + 44 x + 5$$2$$4$$8$$C_4\times C_2$$[2]^{4}$
2.8.8.1$x^{8} + 8 x^{7} + 32 x^{6} + 82 x^{5} + 148 x^{4} + 184 x^{3} + 137 x^{2} + 44 x + 5$$2$$4$$8$$C_4\times C_2$$[2]^{4}$
2.8.8.1$x^{8} + 8 x^{7} + 32 x^{6} + 82 x^{5} + 148 x^{4} + 184 x^{3} + 137 x^{2} + 44 x + 5$$2$$4$$8$$C_4\times C_2$$[2]^{4}$
\(5\) Copy content Toggle raw display 5.8.4.1$x^{8} + 80 x^{7} + 2428 x^{6} + 33688 x^{5} + 195810 x^{4} + 305952 x^{3} + 870132 x^{2} + 1037416 x + 503089$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
5.8.4.1$x^{8} + 80 x^{7} + 2428 x^{6} + 33688 x^{5} + 195810 x^{4} + 305952 x^{3} + 870132 x^{2} + 1037416 x + 503089$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
5.8.4.1$x^{8} + 80 x^{7} + 2428 x^{6} + 33688 x^{5} + 195810 x^{4} + 305952 x^{3} + 870132 x^{2} + 1037416 x + 503089$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
5.8.4.1$x^{8} + 80 x^{7} + 2428 x^{6} + 33688 x^{5} + 195810 x^{4} + 305952 x^{3} + 870132 x^{2} + 1037416 x + 503089$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
\(7\) Copy content Toggle raw display 7.4.2.1$x^{4} + 12 x^{3} + 56 x^{2} + 120 x + 268$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 12 x^{3} + 56 x^{2} + 120 x + 268$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 12 x^{3} + 56 x^{2} + 120 x + 268$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 12 x^{3} + 56 x^{2} + 120 x + 268$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.8.4.1$x^{8} + 38 x^{6} + 8 x^{5} + 395 x^{4} - 72 x^{3} + 1026 x^{2} - 872 x + 401$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
7.8.4.1$x^{8} + 38 x^{6} + 8 x^{5} + 395 x^{4} - 72 x^{3} + 1026 x^{2} - 872 x + 401$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
\(29\) Copy content Toggle raw display 29.2.0.1$x^{2} + 24 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
29.2.0.1$x^{2} + 24 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
29.2.0.1$x^{2} + 24 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
29.2.0.1$x^{2} + 24 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
29.2.0.1$x^{2} + 24 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
29.2.0.1$x^{2} + 24 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
29.2.0.1$x^{2} + 24 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
29.2.0.1$x^{2} + 24 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
29.4.2.1$x^{4} + 1440 x^{3} + 535166 x^{2} + 12071520 x + 1504089$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
29.4.2.1$x^{4} + 1440 x^{3} + 535166 x^{2} + 12071520 x + 1504089$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
29.4.2.1$x^{4} + 1440 x^{3} + 535166 x^{2} + 12071520 x + 1504089$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
29.4.2.1$x^{4} + 1440 x^{3} + 535166 x^{2} + 12071520 x + 1504089$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
\(1049\) Copy content Toggle raw display Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $4$$2$$2$$2$
Deg $4$$2$$2$$2$