Normalized defining polynomial
\( x^{32} + 8 x^{30} + 44 x^{28} + 208 x^{26} + 910 x^{24} + 2800 x^{22} + 7440 x^{20} + 17664 x^{18} + 35492 x^{16} + 44096 x^{14} + 49952 x^{12} + 50240 x^{10} + 37432 x^{8} + 5696 x^{6} + 864 x^{4} + 128 x^{2} + 16 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{2} a^{9}$, $\frac{1}{2} a^{10}$, $\frac{1}{2} a^{11}$, $\frac{1}{2} a^{12}$, $\frac{1}{2} a^{13}$, $\frac{1}{2} a^{14}$, $\frac{1}{2} a^{15}$, $\frac{1}{4} a^{16}$, $\frac{1}{4} a^{17}$, $\frac{1}{124} a^{18} - \frac{15}{124} a^{16} + \frac{2}{31} a^{14} + \frac{1}{31} a^{12} + \frac{1}{62} a^{10} + \frac{13}{62} a^{8} + \frac{11}{31} a^{6} - \frac{10}{31} a^{4} - \frac{5}{31} a^{2} + \frac{13}{31}$, $\frac{1}{124} a^{19} - \frac{15}{124} a^{17} + \frac{2}{31} a^{15} + \frac{1}{31} a^{13} + \frac{1}{62} a^{11} + \frac{13}{62} a^{9} + \frac{11}{31} a^{7} - \frac{10}{31} a^{5} - \frac{5}{31} a^{3} + \frac{13}{31} a$, $\frac{1}{124} a^{20} - \frac{3}{62} a^{10} + \frac{9}{31}$, $\frac{1}{124} a^{21} - \frac{3}{62} a^{11} + \frac{9}{31} a$, $\frac{1}{124} a^{22} - \frac{3}{62} a^{12} + \frac{9}{31} a^{2}$, $\frac{1}{124} a^{23} - \frac{3}{62} a^{13} + \frac{9}{31} a^{3}$, $\frac{1}{248} a^{24} + \frac{7}{31} a^{14} - \frac{11}{31} a^{4}$, $\frac{1}{248} a^{25} + \frac{7}{31} a^{15} - \frac{11}{31} a^{5}$, $\frac{1}{102362248} a^{26} - \frac{3173}{1651004} a^{24} + \frac{85069}{51181124} a^{22} + \frac{85657}{25590562} a^{20} + \frac{79539}{25590562} a^{18} - \frac{411907}{51181124} a^{16} - \frac{573153}{25590562} a^{14} + \frac{31366}{12795281} a^{12} + \frac{3144819}{25590562} a^{10} - \frac{3841175}{25590562} a^{8} - \frac{5143468}{12795281} a^{6} - \frac{3127171}{12795281} a^{4} - \frac{1006672}{12795281} a^{2} + \frac{4928301}{12795281}$, $\frac{1}{102362248} a^{27} - \frac{3173}{1651004} a^{25} + \frac{85069}{51181124} a^{23} + \frac{85657}{25590562} a^{21} + \frac{79539}{25590562} a^{19} - \frac{411907}{51181124} a^{17} - \frac{573153}{25590562} a^{15} + \frac{31366}{12795281} a^{13} + \frac{3144819}{25590562} a^{11} - \frac{3841175}{25590562} a^{9} - \frac{5143468}{12795281} a^{7} - \frac{3127171}{12795281} a^{5} - \frac{1006672}{12795281} a^{3} + \frac{4928301}{12795281} a$, $\frac{1}{3173229688} a^{28} - \frac{15}{3173229688} a^{26} - \frac{1353545}{3173229688} a^{24} + \frac{2071545}{793307422} a^{22} - \frac{4501075}{1586614844} a^{20} - \frac{1974767}{1586614844} a^{18} + \frac{44767237}{1586614844} a^{16} + \frac{122974903}{793307422} a^{14} + \frac{11094585}{396653711} a^{12} - \frac{181713821}{793307422} a^{10} - \frac{35684806}{396653711} a^{8} - \frac{174213533}{396653711} a^{6} - \frac{90689607}{396653711} a^{4} - \frac{125886043}{396653711} a^{2} + \frac{9949030}{396653711}$, $\frac{1}{3173229688} a^{29} - \frac{15}{3173229688} a^{27} - \frac{1353545}{3173229688} a^{25} + \frac{2071545}{793307422} a^{23} - \frac{4501075}{1586614844} a^{21} - \frac{1974767}{1586614844} a^{19} + \frac{44767237}{1586614844} a^{17} + \frac{122974903}{793307422} a^{15} + \frac{11094585}{396653711} a^{13} - \frac{181713821}{793307422} a^{11} - \frac{35684806}{396653711} a^{9} - \frac{174213533}{396653711} a^{7} - \frac{90689607}{396653711} a^{5} - \frac{125886043}{396653711} a^{3} + \frac{9949030}{396653711} a$, $\frac{1}{3173229688} a^{30} - \frac{57208}{396653711} a^{20} - \frac{54751068}{396653711} a^{10} + \frac{130294233}{396653711}$, $\frac{1}{3173229688} a^{31} - \frac{57208}{396653711} a^{21} - \frac{54751068}{396653711} a^{11} + \frac{130294233}{396653711} a$
Class group and class number
$C_{3}\times C_{615}$, which has order $1845$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{7546805}{793307422} a^{30} + \frac{120744621}{1586614844} a^{28} + \frac{166029710}{396653711} a^{26} + \frac{784867720}{396653711} a^{24} + \frac{3433796275}{396653711} a^{22} + \frac{10565527000}{396653711} a^{20} + \frac{28075191666}{396653711} a^{18} + \frac{66653381760}{396653711} a^{16} + \frac{133925601530}{396653711} a^{14} + \frac{166391956640}{396653711} a^{12} + \frac{188489001680}{396653711} a^{10} + \frac{378845991847}{793307422} a^{8} + \frac{141246002380}{396653711} a^{6} + \frac{21493300640}{396653711} a^{4} + \frac{3260219760}{396653711} a^{2} + \frac{482995520}{396653711} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 323273529801.8212 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4\times C_8$ (as 32T43):
| An abelian group of order 32 |
| The 32 conjugacy class representatives for $C_4\times C_8$ |
| Character table for $C_4\times C_8$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{32}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||