Properties

Label 32.0.115...176.1
Degree $32$
Signature $[0, 16]$
Discriminant $1.157\times 10^{48}$
Root discriminant \(31.77\)
Ramified primes $2,3,13,17$
Class number $12$ (GRH)
Class group [2, 6] (GRH)
Galois group $C_2\times D_4^2$ (as 32T1016)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^32 + 10*x^30 - 28*x^29 + 56*x^28 - 208*x^27 + 604*x^26 - 876*x^25 + 2547*x^24 - 5760*x^23 + 7684*x^22 - 11384*x^21 + 37676*x^20 - 21776*x^19 + 12262*x^18 - 135456*x^17 + 96553*x^16 + 443172*x^15 + 1107228*x^14 + 758160*x^13 - 662400*x^12 - 2309040*x^11 - 1681344*x^10 + 1407456*x^9 + 4596912*x^8 + 3872448*x^7 - 62208*x^6 - 4385664*x^5 - 3545856*x^4 + 3919104*x^2 + 3359232*x + 1679616)
 
gp: K = bnfinit(y^32 + 10*y^30 - 28*y^29 + 56*y^28 - 208*y^27 + 604*y^26 - 876*y^25 + 2547*y^24 - 5760*y^23 + 7684*y^22 - 11384*y^21 + 37676*y^20 - 21776*y^19 + 12262*y^18 - 135456*y^17 + 96553*y^16 + 443172*y^15 + 1107228*y^14 + 758160*y^13 - 662400*y^12 - 2309040*y^11 - 1681344*y^10 + 1407456*y^9 + 4596912*y^8 + 3872448*y^7 - 62208*y^6 - 4385664*y^5 - 3545856*y^4 + 3919104*y^2 + 3359232*y + 1679616, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^32 + 10*x^30 - 28*x^29 + 56*x^28 - 208*x^27 + 604*x^26 - 876*x^25 + 2547*x^24 - 5760*x^23 + 7684*x^22 - 11384*x^21 + 37676*x^20 - 21776*x^19 + 12262*x^18 - 135456*x^17 + 96553*x^16 + 443172*x^15 + 1107228*x^14 + 758160*x^13 - 662400*x^12 - 2309040*x^11 - 1681344*x^10 + 1407456*x^9 + 4596912*x^8 + 3872448*x^7 - 62208*x^6 - 4385664*x^5 - 3545856*x^4 + 3919104*x^2 + 3359232*x + 1679616);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^32 + 10*x^30 - 28*x^29 + 56*x^28 - 208*x^27 + 604*x^26 - 876*x^25 + 2547*x^24 - 5760*x^23 + 7684*x^22 - 11384*x^21 + 37676*x^20 - 21776*x^19 + 12262*x^18 - 135456*x^17 + 96553*x^16 + 443172*x^15 + 1107228*x^14 + 758160*x^13 - 662400*x^12 - 2309040*x^11 - 1681344*x^10 + 1407456*x^9 + 4596912*x^8 + 3872448*x^7 - 62208*x^6 - 4385664*x^5 - 3545856*x^4 + 3919104*x^2 + 3359232*x + 1679616)
 

\( x^{32} + 10 x^{30} - 28 x^{29} + 56 x^{28} - 208 x^{27} + 604 x^{26} - 876 x^{25} + 2547 x^{24} + \cdots + 1679616 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $32$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 16]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(1156745857256138299057661301456078800598048178176\) \(\medspace = 2^{72}\cdot 3^{16}\cdot 13^{8}\cdot 17^{8}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(31.77\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{9/4}3^{1/2}13^{1/2}17^{1/2}\approx 122.48255985916441$
Ramified primes:   \(2\), \(3\), \(13\), \(17\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $8$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is a CM field.
Reflex fields:  unavailable$^{32768}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{6}a^{18}-\frac{1}{3}a^{16}+\frac{1}{3}a^{15}+\frac{1}{3}a^{14}+\frac{1}{3}a^{13}-\frac{1}{3}a^{12}-\frac{1}{2}a^{10}-\frac{1}{3}a^{8}-\frac{1}{3}a^{7}+\frac{1}{3}a^{6}-\frac{1}{3}a^{5}-\frac{1}{3}a^{4}+\frac{1}{6}a^{2}$, $\frac{1}{6}a^{19}-\frac{1}{3}a^{17}+\frac{1}{3}a^{16}+\frac{1}{3}a^{15}+\frac{1}{3}a^{14}-\frac{1}{3}a^{13}-\frac{1}{2}a^{11}-\frac{1}{3}a^{9}-\frac{1}{3}a^{8}+\frac{1}{3}a^{7}-\frac{1}{3}a^{6}-\frac{1}{3}a^{5}+\frac{1}{6}a^{3}$, $\frac{1}{36}a^{20}-\frac{1}{18}a^{18}+\frac{2}{9}a^{17}+\frac{2}{9}a^{16}-\frac{4}{9}a^{15}+\frac{1}{9}a^{14}+\frac{5}{12}a^{12}+\frac{4}{9}a^{10}-\frac{2}{9}a^{9}+\frac{2}{9}a^{8}-\frac{2}{9}a^{7}-\frac{1}{18}a^{6}-\frac{11}{36}a^{4}+\frac{1}{3}a^{3}$, $\frac{1}{36}a^{21}-\frac{1}{18}a^{19}+\frac{1}{18}a^{18}+\frac{2}{9}a^{17}-\frac{1}{9}a^{16}-\frac{2}{9}a^{15}-\frac{1}{3}a^{14}+\frac{1}{12}a^{13}+\frac{1}{3}a^{12}+\frac{4}{9}a^{11}+\frac{5}{18}a^{10}+\frac{2}{9}a^{9}+\frac{1}{9}a^{8}+\frac{5}{18}a^{7}-\frac{1}{3}a^{6}+\frac{1}{36}a^{5}-\frac{1}{3}a^{4}-\frac{1}{6}a^{2}$, $\frac{1}{216}a^{22}-\frac{1}{108}a^{20}+\frac{1}{27}a^{19}+\frac{1}{27}a^{18}+\frac{7}{27}a^{17}+\frac{19}{54}a^{16}-\frac{1}{2}a^{15}+\frac{17}{72}a^{14}+\frac{1}{3}a^{13}+\frac{11}{27}a^{12}-\frac{11}{54}a^{11}-\frac{25}{54}a^{10}+\frac{8}{27}a^{9}-\frac{37}{108}a^{8}+\frac{1}{3}a^{7}+\frac{25}{216}a^{6}+\frac{1}{18}a^{5}+\frac{1}{3}a^{4}-\frac{1}{2}a^{3}$, $\frac{1}{216}a^{23}-\frac{1}{108}a^{21}+\frac{1}{108}a^{20}+\frac{1}{27}a^{19}-\frac{1}{54}a^{18}+\frac{7}{54}a^{17}-\frac{1}{18}a^{16}+\frac{1}{72}a^{15}-\frac{4}{9}a^{14}-\frac{7}{27}a^{13}+\frac{5}{108}a^{12}-\frac{25}{54}a^{11}-\frac{4}{27}a^{10}-\frac{13}{108}a^{9}-\frac{2}{9}a^{8}+\frac{1}{216}a^{7}+\frac{4}{9}a^{6}+\frac{17}{36}a^{4}-\frac{1}{3}a^{3}-\frac{1}{3}a^{2}$, $\frac{1}{1296}a^{24}-\frac{1}{648}a^{22}+\frac{1}{162}a^{21}+\frac{1}{162}a^{20}+\frac{7}{162}a^{19}+\frac{19}{324}a^{18}-\frac{1}{12}a^{17}+\frac{161}{432}a^{16}-\frac{1}{9}a^{15}-\frac{35}{81}a^{14}-\frac{11}{324}a^{13}-\frac{79}{324}a^{12}+\frac{4}{81}a^{11}+\frac{179}{648}a^{10}-\frac{1}{9}a^{9}+\frac{241}{1296}a^{8}-\frac{35}{108}a^{7}+\frac{2}{9}a^{6}+\frac{1}{4}a^{5}-\frac{1}{2}a^{4}$, $\frac{1}{2592}a^{25}-\frac{1}{1296}a^{23}-\frac{1}{648}a^{22}-\frac{7}{648}a^{21}+\frac{1}{324}a^{20}+\frac{13}{648}a^{19}+\frac{7}{216}a^{18}-\frac{13}{32}a^{17}-\frac{13}{54}a^{16}+\frac{1}{162}a^{15}+\frac{38}{81}a^{14}-\frac{107}{324}a^{13}+\frac{119}{324}a^{12}+\frac{155}{1296}a^{11}+\frac{2}{27}a^{10}-\frac{239}{2592}a^{9}-\frac{19}{72}a^{8}-\frac{11}{36}a^{7}+\frac{43}{108}a^{6}-\frac{35}{72}a^{5}-\frac{1}{36}a^{4}-\frac{1}{3}a^{3}-\frac{1}{3}a^{2}-\frac{1}{2}a$, $\frac{1}{7776}a^{26}-\frac{1}{3888}a^{24}+\frac{1}{972}a^{23}+\frac{1}{972}a^{22}+\frac{7}{972}a^{21}+\frac{19}{1944}a^{20}-\frac{1}{72}a^{19}+\frac{161}{2592}a^{18}+\frac{4}{27}a^{17}-\frac{35}{486}a^{16}-\frac{659}{1944}a^{15}-\frac{403}{1944}a^{14}+\frac{85}{486}a^{13}+\frac{1475}{3888}a^{12}+\frac{17}{54}a^{11}-\frac{1055}{7776}a^{10}-\frac{35}{648}a^{9}+\frac{1}{27}a^{8}+\frac{1}{24}a^{7}-\frac{1}{4}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}+\frac{1}{6}a^{2}$, $\frac{1}{15552}a^{27}-\frac{1}{7776}a^{25}-\frac{1}{3888}a^{24}-\frac{7}{3888}a^{23}+\frac{1}{1944}a^{22}+\frac{13}{3888}a^{21}+\frac{7}{1296}a^{20}-\frac{13}{192}a^{19}-\frac{13}{324}a^{18}-\frac{161}{972}a^{17}-\frac{62}{243}a^{16}-\frac{431}{1944}a^{15}+\frac{119}{1944}a^{14}+\frac{155}{7776}a^{13}-\frac{26}{81}a^{12}-\frac{2831}{15552}a^{11}+\frac{197}{432}a^{10}-\frac{47}{216}a^{9}+\frac{259}{648}a^{8}-\frac{107}{432}a^{7}+\frac{35}{216}a^{6}+\frac{4}{9}a^{5}-\frac{2}{9}a^{4}+\frac{5}{12}a^{3}+\frac{1}{6}a^{2}$, $\frac{1}{51554880}a^{28}-\frac{101}{8592480}a^{27}-\frac{193}{25777440}a^{26}+\frac{229}{1982880}a^{25}-\frac{3547}{12888720}a^{24}-\frac{1837}{991440}a^{23}+\frac{1969}{991440}a^{22}+\frac{5351}{859248}a^{21}+\frac{15331}{5728320}a^{20}+\frac{7561}{190944}a^{19}+\frac{500699}{6444360}a^{18}+\frac{1021219}{5155488}a^{17}-\frac{17369}{644436}a^{16}-\frac{224971}{6444360}a^{15}+\frac{550619}{1982880}a^{14}+\frac{683311}{1432080}a^{13}-\frac{2472623}{51554880}a^{12}-\frac{146213}{954720}a^{11}+\frac{240473}{537030}a^{10}+\frac{1069177}{2864160}a^{9}+\frac{13993}{110160}a^{8}+\frac{37}{39780}a^{7}+\frac{67471}{238680}a^{6}-\frac{2503}{8840}a^{5}-\frac{313}{39780}a^{4}+\frac{1711}{6630}a^{3}+\frac{233}{663}a^{2}+\frac{29}{442}a-\frac{213}{1105}$, $\frac{1}{10620305280}a^{29}-\frac{31}{5310152640}a^{28}-\frac{13115}{1062030528}a^{27}-\frac{281}{9833616}a^{26}+\frac{89831}{1327538160}a^{25}-\frac{41909}{165942270}a^{24}+\frac{100537}{68078880}a^{23}-\frac{3080477}{2655076320}a^{22}-\frac{10846247}{3540101760}a^{21}-\frac{2059253}{590016960}a^{20}+\frac{208001983}{2655076320}a^{19}-\frac{13387781}{331884540}a^{18}-\frac{42335}{6555744}a^{17}-\frac{199972777}{442512720}a^{16}-\frac{1157883029}{5310152640}a^{15}+\frac{1322824483}{2655076320}a^{14}+\frac{3995785801}{10620305280}a^{13}-\frac{556027477}{5310152640}a^{12}-\frac{34752703}{177005088}a^{11}+\frac{174579797}{442512720}a^{10}+\frac{69499889}{147504240}a^{9}+\frac{31051717}{73752120}a^{8}+\frac{4142287}{24584040}a^{7}-\frac{567947}{3073005}a^{6}+\frac{608783}{1365780}a^{5}+\frac{86779}{1365780}a^{4}-\frac{26161}{52530}a^{3}-\frac{5147}{10506}a^{2}-\frac{62433}{227630}a-\frac{1913}{6695}$, $\frac{1}{56\!\cdots\!80}a^{30}+\frac{10556179}{18\!\cdots\!60}a^{29}+\frac{11515517803}{14\!\cdots\!20}a^{28}+\frac{628349476111}{33\!\cdots\!44}a^{27}-\frac{55141026504313}{14\!\cdots\!20}a^{26}-\frac{893889347059}{35\!\cdots\!80}a^{25}-\frac{9029550811823}{14\!\cdots\!20}a^{24}-\frac{1301059037125}{29\!\cdots\!19}a^{23}+\frac{18\!\cdots\!29}{18\!\cdots\!60}a^{22}+\frac{668770898016763}{63\!\cdots\!20}a^{21}-\frac{16\!\cdots\!87}{28\!\cdots\!40}a^{20}+\frac{11\!\cdots\!89}{14\!\cdots\!20}a^{19}+\frac{63\!\cdots\!81}{17\!\cdots\!40}a^{18}-\frac{19\!\cdots\!21}{83\!\cdots\!60}a^{17}+\frac{17\!\cdots\!51}{56\!\cdots\!48}a^{16}+\frac{20\!\cdots\!91}{63\!\cdots\!72}a^{15}+\frac{19\!\cdots\!49}{56\!\cdots\!80}a^{14}+\frac{15\!\cdots\!19}{37\!\cdots\!32}a^{13}-\frac{87\!\cdots\!01}{94\!\cdots\!80}a^{12}+\frac{25\!\cdots\!43}{15\!\cdots\!80}a^{11}-\frac{78\!\cdots\!23}{31\!\cdots\!36}a^{10}-\frac{216197970145843}{26\!\cdots\!28}a^{9}+\frac{245588390197741}{10\!\cdots\!80}a^{8}+\frac{522636676664147}{21\!\cdots\!40}a^{7}-\frac{6517614342479}{109784576823597}a^{6}+\frac{363758997961751}{731897178823980}a^{5}-\frac{91316574805}{827002461948}a^{4}-\frac{8374457789739}{20330477189555}a^{3}-\frac{8693239495658}{20330477189555}a^{2}+\frac{8383053890937}{40660954379110}a+\frac{1897953289512}{20330477189555}$, $\frac{1}{92\!\cdots\!40}a^{31}+\frac{80\!\cdots\!31}{28\!\cdots\!20}a^{30}+\frac{69\!\cdots\!09}{11\!\cdots\!80}a^{29}-\frac{21\!\cdots\!81}{77\!\cdots\!52}a^{28}+\frac{21\!\cdots\!67}{23\!\cdots\!60}a^{27}+\frac{25\!\cdots\!51}{57\!\cdots\!40}a^{26}+\frac{87\!\cdots\!59}{77\!\cdots\!20}a^{25}-\frac{37\!\cdots\!47}{46\!\cdots\!12}a^{24}+\frac{19\!\cdots\!09}{30\!\cdots\!80}a^{23}+\frac{71\!\cdots\!83}{38\!\cdots\!60}a^{22}-\frac{45\!\cdots\!37}{46\!\cdots\!20}a^{21}-\frac{43\!\cdots\!49}{39\!\cdots\!40}a^{20}-\frac{45\!\cdots\!79}{77\!\cdots\!20}a^{19}+\frac{25\!\cdots\!03}{64\!\cdots\!60}a^{18}-\frac{82\!\cdots\!69}{71\!\cdots\!48}a^{17}+\frac{16\!\cdots\!83}{57\!\cdots\!64}a^{16}+\frac{14\!\cdots\!69}{92\!\cdots\!40}a^{15}-\frac{89\!\cdots\!29}{46\!\cdots\!12}a^{14}-\frac{38\!\cdots\!27}{51\!\cdots\!80}a^{13}-\frac{10\!\cdots\!57}{25\!\cdots\!40}a^{12}+\frac{77\!\cdots\!41}{49\!\cdots\!92}a^{11}-\frac{22\!\cdots\!93}{21\!\cdots\!16}a^{10}-\frac{63\!\cdots\!99}{42\!\cdots\!40}a^{9}+\frac{10\!\cdots\!97}{21\!\cdots\!20}a^{8}+\frac{15\!\cdots\!25}{59\!\cdots\!62}a^{7}-\frac{55\!\cdots\!79}{11\!\cdots\!40}a^{6}+\frac{66\!\cdots\!21}{23\!\cdots\!48}a^{5}-\frac{20\!\cdots\!68}{29\!\cdots\!55}a^{4}-\frac{69\!\cdots\!73}{19\!\cdots\!40}a^{3}-\frac{70\!\cdots\!82}{16\!\cdots\!45}a^{2}+\frac{21\!\cdots\!61}{16\!\cdots\!45}a-\frac{22\!\cdots\!22}{33\!\cdots\!09}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

$C_{2}\times C_{6}$, which has order $12$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $15$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -\frac{2382040416463893287579988002935126354438348091}{515477119380461264183951029834926849889653226231680} a^{31} + \frac{3682789795177403138638270834516944070227363203}{773215679070691896275926544752390274834479839347520} a^{30} - \frac{20967387111652544489826270846085005876635986313}{515477119380461264183951029834926849889653226231680} a^{29} + \frac{31243637747961692447976143633798921308980754199}{193303919767672974068981636188097568708619959836880} a^{28} - \frac{63129155110638127433087581505365914669819533501}{193303919767672974068981636188097568708619959836880} a^{27} + \frac{360364649717040292041352515912294909958117011551}{386607839535345948137963272376195137417239919673760} a^{26} - \frac{574748503058125071600352040260274794414533356249}{193303919767672974068981636188097568708619959836880} a^{25} + \frac{1849545817408832893584982932525108163474351617499}{386607839535345948137963272376195137417239919673760} a^{24} - \frac{545420148945689144129036656432652336071582454333}{57275235486717918242661225537214094432183691803520} a^{23} + \frac{6286740477284044237740641871516511148186478106421}{257738559690230632091975514917463424944826613115840} a^{22} - \frac{17737972569223884991294154622025789970222656832869}{515477119380461264183951029834926849889653226231680} a^{21} + \frac{4791806337799625457048373758245893324477026896171}{193303919767672974068981636188097568708619959836880} a^{20} - \frac{82060165737750402102115092497127928595837112474109}{773215679070691896275926544752390274834479839347520} a^{19} + \frac{2168959825369738001735847882358002015822799622527}{19330391976767297406898163618809756870861995983688} a^{18} + \frac{106766355635967619589371429383246572278464215296367}{773215679070691896275926544752390274834479839347520} a^{17} + \frac{69272108479477756457391396122135452470665863441249}{386607839535345948137963272376195137417239919673760} a^{16} - \frac{391365008615154854387254896451022970580844462880821}{515477119380461264183951029834926849889653226231680} a^{15} - \frac{5016225456734192320077182764748934845515474208641}{2621070098544718292460767948313187372320270641856} a^{14} - \frac{55874833171130120593100750802215200986053984886629}{34365141292030750945596735322328456659310215082112} a^{13} + \frac{21273441970050799169440881522061949394143181274337}{8591285323007687736399183830582114164827553770528} a^{12} + \frac{475317329405255026660982790262069946590404977681371}{85912853230076877363991838305821141648275537705280} a^{11} + \frac{11162586685496737716708344994002636716670682759527}{3790272936621038707234934042903873896247450192880} a^{10} - \frac{1066467453304509977653620069842689783439158389185}{178985110895993494508316329803794045100574036886} a^{9} - \frac{7019431277068432227719095506554039001473885868985}{715940443583973978033265319215176180402296147544} a^{8} - \frac{11238824635581134298565346081203266552079755987179}{2386468145279913260110884397383920601340987158480} a^{7} + \frac{87157418284967221709688369452342959796978943055}{13258156362666184778393802207688447785227706436} a^{6} + \frac{2263822084368440320266593843967294364176777920747}{198872345439992771675907033115326716778415596540} a^{5} + \frac{47799669900353767156719485395406138420344795301}{11698373261176045392700413712666277457553858620} a^{4} - \frac{494815471693783692344320667845565975084605181541}{66290781813330923891969011038442238926138532180} a^{3} - \frac{143399542719934548484754326616288733192503896177}{16572695453332730972992252759610559731534633045} a^{2} - \frac{67967154683506895197862508698305376868873332343}{33145390906665461945984505519221119463069266090} a + \frac{57098645926766317052443680808417814698553965638}{16572695453332730972992252759610559731534633045} \)  (order $24$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{18\!\cdots\!13}{30\!\cdots\!80}a^{31}-\frac{31\!\cdots\!27}{46\!\cdots\!20}a^{30}+\frac{96\!\cdots\!37}{15\!\cdots\!40}a^{29}-\frac{53\!\cdots\!83}{23\!\cdots\!60}a^{28}+\frac{12\!\cdots\!91}{23\!\cdots\!60}a^{27}-\frac{37\!\cdots\!97}{23\!\cdots\!56}a^{26}+\frac{11\!\cdots\!69}{23\!\cdots\!60}a^{25}-\frac{21\!\cdots\!27}{23\!\cdots\!60}a^{24}+\frac{63\!\cdots\!59}{30\!\cdots\!80}a^{23}-\frac{74\!\cdots\!11}{15\!\cdots\!40}a^{22}+\frac{60\!\cdots\!91}{77\!\cdots\!20}a^{21}-\frac{41\!\cdots\!83}{39\!\cdots\!40}a^{20}+\frac{30\!\cdots\!99}{11\!\cdots\!80}a^{19}-\frac{34\!\cdots\!47}{11\!\cdots\!80}a^{18}+\frac{62\!\cdots\!53}{46\!\cdots\!20}a^{17}-\frac{14\!\cdots\!61}{23\!\cdots\!60}a^{16}+\frac{11\!\cdots\!03}{11\!\cdots\!40}a^{15}+\frac{20\!\cdots\!07}{92\!\cdots\!24}a^{14}+\frac{24\!\cdots\!21}{77\!\cdots\!20}a^{13}-\frac{36\!\cdots\!31}{77\!\cdots\!20}a^{12}-\frac{14\!\cdots\!57}{25\!\cdots\!40}a^{11}-\frac{15\!\cdots\!49}{23\!\cdots\!55}a^{10}+\frac{68\!\cdots\!51}{42\!\cdots\!40}a^{9}+\frac{23\!\cdots\!15}{21\!\cdots\!32}a^{8}+\frac{18\!\cdots\!09}{14\!\cdots\!88}a^{7}+\frac{25\!\cdots\!77}{89\!\cdots\!30}a^{6}-\frac{11\!\cdots\!11}{11\!\cdots\!40}a^{5}-\frac{47\!\cdots\!17}{35\!\cdots\!60}a^{4}+\frac{17\!\cdots\!88}{16\!\cdots\!45}a^{3}+\frac{55\!\cdots\!93}{66\!\cdots\!18}a^{2}+\frac{34\!\cdots\!37}{33\!\cdots\!90}a+\frac{40\!\cdots\!58}{16\!\cdots\!45}$, $\frac{10\!\cdots\!39}{65\!\cdots\!40}a^{31}-\frac{30\!\cdots\!07}{15\!\cdots\!36}a^{30}+\frac{17\!\cdots\!89}{10\!\cdots\!60}a^{29}-\frac{25\!\cdots\!11}{39\!\cdots\!40}a^{28}+\frac{29\!\cdots\!67}{19\!\cdots\!20}a^{27}-\frac{90\!\cdots\!49}{19\!\cdots\!20}a^{26}+\frac{13\!\cdots\!57}{98\!\cdots\!60}a^{25}-\frac{52\!\cdots\!21}{19\!\cdots\!20}a^{24}+\frac{66\!\cdots\!79}{10\!\cdots\!40}a^{23}-\frac{37\!\cdots\!39}{26\!\cdots\!60}a^{22}+\frac{31\!\cdots\!83}{13\!\cdots\!80}a^{21}-\frac{67\!\cdots\!39}{19\!\cdots\!20}a^{20}+\frac{15\!\cdots\!29}{19\!\cdots\!20}a^{19}-\frac{96\!\cdots\!41}{98\!\cdots\!96}a^{18}+\frac{15\!\cdots\!29}{24\!\cdots\!40}a^{17}-\frac{78\!\cdots\!77}{39\!\cdots\!40}a^{16}+\frac{21\!\cdots\!87}{65\!\cdots\!64}a^{15}+\frac{40\!\cdots\!41}{78\!\cdots\!80}a^{14}+\frac{11\!\cdots\!51}{13\!\cdots\!80}a^{13}-\frac{88\!\cdots\!45}{48\!\cdots\!64}a^{12}-\frac{66\!\cdots\!99}{43\!\cdots\!76}a^{11}-\frac{12\!\cdots\!77}{75\!\cdots\!20}a^{10}+\frac{87\!\cdots\!09}{18\!\cdots\!40}a^{9}+\frac{10\!\cdots\!29}{36\!\cdots\!80}a^{8}+\frac{40\!\cdots\!43}{12\!\cdots\!16}a^{7}-\frac{33\!\cdots\!61}{22\!\cdots\!40}a^{6}-\frac{61\!\cdots\!97}{25\!\cdots\!95}a^{5}-\frac{54\!\cdots\!16}{14\!\cdots\!35}a^{4}+\frac{10\!\cdots\!23}{16\!\cdots\!30}a^{3}+\frac{17\!\cdots\!88}{84\!\cdots\!65}a^{2}+\frac{79\!\cdots\!91}{28\!\cdots\!55}a+\frac{11\!\cdots\!64}{28\!\cdots\!55}$, $\frac{12\!\cdots\!57}{51\!\cdots\!80}a^{31}-\frac{20\!\cdots\!21}{46\!\cdots\!20}a^{30}+\frac{42\!\cdots\!73}{15\!\cdots\!40}a^{29}-\frac{25\!\cdots\!01}{23\!\cdots\!60}a^{28}+\frac{16\!\cdots\!81}{57\!\cdots\!40}a^{27}-\frac{24\!\cdots\!49}{28\!\cdots\!20}a^{26}+\frac{14\!\cdots\!09}{57\!\cdots\!40}a^{25}-\frac{31\!\cdots\!47}{57\!\cdots\!40}a^{24}+\frac{18\!\cdots\!17}{15\!\cdots\!40}a^{23}-\frac{41\!\cdots\!57}{15\!\cdots\!40}a^{22}+\frac{25\!\cdots\!03}{51\!\cdots\!80}a^{21}-\frac{43\!\cdots\!51}{57\!\cdots\!40}a^{20}+\frac{34\!\cdots\!39}{23\!\cdots\!60}a^{19}-\frac{63\!\cdots\!41}{28\!\cdots\!32}a^{18}+\frac{44\!\cdots\!53}{23\!\cdots\!60}a^{17}-\frac{79\!\cdots\!83}{23\!\cdots\!60}a^{16}+\frac{98\!\cdots\!01}{15\!\cdots\!40}a^{15}+\frac{39\!\cdots\!67}{92\!\cdots\!24}a^{14}+\frac{75\!\cdots\!13}{10\!\cdots\!36}a^{13}-\frac{25\!\cdots\!31}{25\!\cdots\!84}a^{12}-\frac{46\!\cdots\!61}{25\!\cdots\!40}a^{11}-\frac{65\!\cdots\!83}{75\!\cdots\!60}a^{10}+\frac{94\!\cdots\!83}{47\!\cdots\!96}a^{9}+\frac{69\!\cdots\!15}{21\!\cdots\!32}a^{8}+\frac{15\!\cdots\!59}{71\!\cdots\!40}a^{7}-\frac{20\!\cdots\!31}{71\!\cdots\!44}a^{6}-\frac{39\!\cdots\!88}{14\!\cdots\!05}a^{5}-\frac{98\!\cdots\!01}{35\!\cdots\!60}a^{4}+\frac{73\!\cdots\!11}{19\!\cdots\!40}a^{3}+\frac{89\!\cdots\!72}{49\!\cdots\!35}a^{2}+\frac{68\!\cdots\!61}{33\!\cdots\!90}a-\frac{21\!\cdots\!61}{16\!\cdots\!45}$, $\frac{14\!\cdots\!61}{92\!\cdots\!40}a^{31}-\frac{12\!\cdots\!51}{46\!\cdots\!20}a^{30}+\frac{79\!\cdots\!59}{46\!\cdots\!20}a^{29}-\frac{17\!\cdots\!09}{25\!\cdots\!40}a^{28}+\frac{40\!\cdots\!89}{23\!\cdots\!60}a^{27}-\frac{58\!\cdots\!11}{11\!\cdots\!80}a^{26}+\frac{11\!\cdots\!97}{77\!\cdots\!20}a^{25}-\frac{71\!\cdots\!33}{23\!\cdots\!60}a^{24}+\frac{20\!\cdots\!49}{30\!\cdots\!80}a^{23}-\frac{24\!\cdots\!27}{15\!\cdots\!40}a^{22}+\frac{80\!\cdots\!37}{28\!\cdots\!20}a^{21}-\frac{91\!\cdots\!69}{23\!\cdots\!60}a^{20}+\frac{53\!\cdots\!69}{64\!\cdots\!60}a^{19}-\frac{92\!\cdots\!25}{77\!\cdots\!52}a^{18}+\frac{38\!\cdots\!71}{46\!\cdots\!20}a^{17}-\frac{43\!\cdots\!93}{23\!\cdots\!60}a^{16}+\frac{35\!\cdots\!81}{92\!\cdots\!40}a^{15}+\frac{35\!\cdots\!71}{92\!\cdots\!24}a^{14}+\frac{40\!\cdots\!47}{80\!\cdots\!87}a^{13}-\frac{36\!\cdots\!81}{51\!\cdots\!68}a^{12}-\frac{35\!\cdots\!21}{25\!\cdots\!40}a^{11}-\frac{13\!\cdots\!57}{18\!\cdots\!40}a^{10}+\frac{12\!\cdots\!37}{85\!\cdots\!28}a^{9}+\frac{52\!\cdots\!43}{21\!\cdots\!32}a^{8}+\frac{10\!\cdots\!99}{71\!\cdots\!40}a^{7}-\frac{17\!\cdots\!17}{89\!\cdots\!43}a^{6}-\frac{91\!\cdots\!73}{39\!\cdots\!80}a^{5}-\frac{61\!\cdots\!91}{35\!\cdots\!60}a^{4}+\frac{41\!\cdots\!38}{16\!\cdots\!45}a^{3}+\frac{16\!\cdots\!29}{99\!\cdots\!70}a^{2}+\frac{39\!\cdots\!21}{33\!\cdots\!90}a-\frac{18\!\cdots\!81}{16\!\cdots\!45}$, $\frac{29\!\cdots\!75}{23\!\cdots\!56}a^{31}-\frac{19\!\cdots\!83}{15\!\cdots\!40}a^{30}+\frac{30\!\cdots\!79}{23\!\cdots\!60}a^{29}-\frac{10\!\cdots\!47}{23\!\cdots\!60}a^{28}+\frac{76\!\cdots\!51}{72\!\cdots\!30}a^{27}-\frac{37\!\cdots\!47}{11\!\cdots\!80}a^{26}+\frac{56\!\cdots\!01}{57\!\cdots\!40}a^{25}-\frac{68\!\cdots\!23}{38\!\cdots\!60}a^{24}+\frac{25\!\cdots\!29}{64\!\cdots\!60}a^{23}-\frac{14\!\cdots\!01}{15\!\cdots\!40}a^{22}+\frac{26\!\cdots\!41}{17\!\cdots\!20}a^{21}-\frac{56\!\cdots\!29}{28\!\cdots\!20}a^{20}+\frac{29\!\cdots\!21}{57\!\cdots\!40}a^{19}-\frac{31\!\cdots\!71}{57\!\cdots\!40}a^{18}+\frac{96\!\cdots\!89}{57\!\cdots\!40}a^{17}-\frac{31\!\cdots\!31}{25\!\cdots\!40}a^{16}+\frac{28\!\cdots\!47}{14\!\cdots\!60}a^{15}+\frac{15\!\cdots\!41}{30\!\cdots\!08}a^{14}+\frac{55\!\cdots\!67}{77\!\cdots\!20}a^{13}-\frac{27\!\cdots\!21}{96\!\cdots\!40}a^{12}-\frac{20\!\cdots\!23}{16\!\cdots\!40}a^{11}-\frac{67\!\cdots\!13}{44\!\cdots\!40}a^{10}+\frac{44\!\cdots\!29}{21\!\cdots\!20}a^{9}+\frac{25\!\cdots\!99}{10\!\cdots\!60}a^{8}+\frac{72\!\cdots\!53}{23\!\cdots\!48}a^{7}+\frac{12\!\cdots\!79}{35\!\cdots\!20}a^{6}-\frac{41\!\cdots\!89}{19\!\cdots\!40}a^{5}-\frac{54\!\cdots\!81}{17\!\cdots\!30}a^{4}-\frac{32\!\cdots\!79}{38\!\cdots\!95}a^{3}+\frac{31\!\cdots\!72}{16\!\cdots\!45}a^{2}+\frac{39\!\cdots\!93}{16\!\cdots\!45}a+\frac{13\!\cdots\!97}{16\!\cdots\!45}$, $\frac{11\!\cdots\!43}{78\!\cdots\!80}a^{31}+\frac{39\!\cdots\!11}{14\!\cdots\!60}a^{30}+\frac{50\!\cdots\!47}{46\!\cdots\!20}a^{29}-\frac{32\!\cdots\!49}{23\!\cdots\!56}a^{28}-\frac{12\!\cdots\!29}{42\!\cdots\!40}a^{27}-\frac{28\!\cdots\!41}{64\!\cdots\!60}a^{26}+\frac{82\!\cdots\!39}{57\!\cdots\!40}a^{25}+\frac{11\!\cdots\!07}{11\!\cdots\!80}a^{24}-\frac{37\!\cdots\!01}{51\!\cdots\!80}a^{23}+\frac{12\!\cdots\!33}{12\!\cdots\!20}a^{22}-\frac{51\!\cdots\!29}{46\!\cdots\!20}a^{21}+\frac{41\!\cdots\!31}{19\!\cdots\!80}a^{20}+\frac{14\!\cdots\!03}{23\!\cdots\!60}a^{19}+\frac{97\!\cdots\!53}{11\!\cdots\!80}a^{18}-\frac{85\!\cdots\!53}{59\!\cdots\!40}a^{17}-\frac{75\!\cdots\!97}{57\!\cdots\!40}a^{16}-\frac{47\!\cdots\!37}{46\!\cdots\!20}a^{15}+\frac{14\!\cdots\!17}{11\!\cdots\!80}a^{14}+\frac{37\!\cdots\!51}{15\!\cdots\!40}a^{13}+\frac{76\!\cdots\!63}{38\!\cdots\!60}a^{12}-\frac{48\!\cdots\!13}{19\!\cdots\!80}a^{11}-\frac{90\!\cdots\!65}{15\!\cdots\!52}a^{10}-\frac{77\!\cdots\!39}{21\!\cdots\!20}a^{9}+\frac{11\!\cdots\!29}{21\!\cdots\!20}a^{8}+\frac{82\!\cdots\!87}{71\!\cdots\!40}a^{7}+\frac{30\!\cdots\!49}{39\!\cdots\!80}a^{6}-\frac{68\!\cdots\!89}{16\!\cdots\!45}a^{5}-\frac{67\!\cdots\!63}{59\!\cdots\!40}a^{4}-\frac{50\!\cdots\!03}{66\!\cdots\!80}a^{3}+\frac{49\!\cdots\!23}{99\!\cdots\!70}a^{2}+\frac{30\!\cdots\!97}{33\!\cdots\!90}a+\frac{10\!\cdots\!58}{16\!\cdots\!45}$, $\frac{91\!\cdots\!01}{92\!\cdots\!40}a^{31}-\frac{50\!\cdots\!71}{57\!\cdots\!40}a^{30}+\frac{45\!\cdots\!73}{46\!\cdots\!20}a^{29}-\frac{45\!\cdots\!41}{12\!\cdots\!20}a^{28}+\frac{17\!\cdots\!91}{23\!\cdots\!60}a^{27}-\frac{27\!\cdots\!69}{11\!\cdots\!80}a^{26}+\frac{18\!\cdots\!11}{25\!\cdots\!40}a^{25}-\frac{29\!\cdots\!39}{23\!\cdots\!60}a^{24}+\frac{88\!\cdots\!37}{30\!\cdots\!80}a^{23}-\frac{27\!\cdots\!83}{40\!\cdots\!35}a^{22}+\frac{47\!\cdots\!15}{46\!\cdots\!12}a^{21}-\frac{29\!\cdots\!19}{23\!\cdots\!60}a^{20}+\frac{13\!\cdots\!71}{38\!\cdots\!60}a^{19}-\frac{33\!\cdots\!11}{96\!\cdots\!40}a^{18}+\frac{10\!\cdots\!27}{46\!\cdots\!20}a^{17}-\frac{48\!\cdots\!27}{57\!\cdots\!64}a^{16}+\frac{12\!\cdots\!17}{92\!\cdots\!40}a^{15}+\frac{94\!\cdots\!71}{23\!\cdots\!60}a^{14}+\frac{44\!\cdots\!49}{77\!\cdots\!20}a^{13}+\frac{29\!\cdots\!47}{77\!\cdots\!20}a^{12}-\frac{85\!\cdots\!49}{85\!\cdots\!80}a^{11}-\frac{46\!\cdots\!41}{37\!\cdots\!80}a^{10}+\frac{85\!\cdots\!37}{66\!\cdots\!56}a^{9}+\frac{40\!\cdots\!61}{21\!\cdots\!20}a^{8}+\frac{17\!\cdots\!71}{71\!\cdots\!40}a^{7}+\frac{22\!\cdots\!45}{59\!\cdots\!62}a^{6}-\frac{19\!\cdots\!37}{11\!\cdots\!40}a^{5}-\frac{95\!\cdots\!11}{38\!\cdots\!40}a^{4}-\frac{10\!\cdots\!93}{49\!\cdots\!35}a^{3}+\frac{15\!\cdots\!90}{99\!\cdots\!27}a^{2}+\frac{62\!\cdots\!99}{33\!\cdots\!90}a+\frac{89\!\cdots\!77}{12\!\cdots\!65}$, $\frac{44\!\cdots\!21}{11\!\cdots\!80}a^{31}-\frac{30\!\cdots\!81}{46\!\cdots\!20}a^{30}+\frac{20\!\cdots\!47}{46\!\cdots\!20}a^{29}-\frac{98\!\cdots\!71}{57\!\cdots\!52}a^{28}+\frac{25\!\cdots\!73}{57\!\cdots\!64}a^{27}-\frac{29\!\cdots\!21}{23\!\cdots\!56}a^{26}+\frac{41\!\cdots\!61}{10\!\cdots\!60}a^{25}-\frac{18\!\cdots\!51}{23\!\cdots\!56}a^{24}+\frac{21\!\cdots\!93}{12\!\cdots\!40}a^{23}-\frac{12\!\cdots\!25}{30\!\cdots\!08}a^{22}+\frac{33\!\cdots\!09}{46\!\cdots\!20}a^{21}-\frac{12\!\cdots\!35}{11\!\cdots\!28}a^{20}+\frac{17\!\cdots\!73}{77\!\cdots\!20}a^{19}-\frac{79\!\cdots\!89}{25\!\cdots\!84}a^{18}+\frac{14\!\cdots\!19}{57\!\cdots\!40}a^{17}-\frac{11\!\cdots\!63}{23\!\cdots\!60}a^{16}+\frac{16\!\cdots\!19}{17\!\cdots\!20}a^{15}+\frac{32\!\cdots\!67}{35\!\cdots\!40}a^{14}+\frac{44\!\cdots\!49}{30\!\cdots\!08}a^{13}-\frac{18\!\cdots\!97}{14\!\cdots\!80}a^{12}-\frac{83\!\cdots\!67}{25\!\cdots\!40}a^{11}-\frac{31\!\cdots\!01}{14\!\cdots\!40}a^{10}+\frac{39\!\cdots\!13}{14\!\cdots\!80}a^{9}+\frac{42\!\cdots\!67}{71\!\cdots\!40}a^{8}+\frac{11\!\cdots\!19}{23\!\cdots\!80}a^{7}-\frac{15\!\cdots\!51}{44\!\cdots\!15}a^{6}-\frac{11\!\cdots\!01}{23\!\cdots\!48}a^{5}-\frac{11\!\cdots\!89}{19\!\cdots\!70}a^{4}+\frac{91\!\cdots\!93}{19\!\cdots\!40}a^{3}+\frac{10\!\cdots\!24}{28\!\cdots\!55}a^{2}+\frac{73\!\cdots\!33}{16\!\cdots\!45}a-\frac{22\!\cdots\!98}{16\!\cdots\!45}$, $\frac{27\!\cdots\!81}{30\!\cdots\!80}a^{31}-\frac{27\!\cdots\!59}{21\!\cdots\!32}a^{30}+\frac{14\!\cdots\!71}{15\!\cdots\!40}a^{29}-\frac{13\!\cdots\!73}{37\!\cdots\!20}a^{28}+\frac{34\!\cdots\!31}{38\!\cdots\!60}a^{27}-\frac{25\!\cdots\!55}{96\!\cdots\!44}a^{26}+\frac{61\!\cdots\!17}{77\!\cdots\!20}a^{25}-\frac{79\!\cdots\!01}{51\!\cdots\!68}a^{24}+\frac{69\!\cdots\!25}{20\!\cdots\!72}a^{23}-\frac{12\!\cdots\!87}{16\!\cdots\!40}a^{22}+\frac{52\!\cdots\!81}{38\!\cdots\!60}a^{21}-\frac{14\!\cdots\!23}{77\!\cdots\!20}a^{20}+\frac{32\!\cdots\!97}{77\!\cdots\!20}a^{19}-\frac{42\!\cdots\!07}{77\!\cdots\!52}a^{18}+\frac{47\!\cdots\!63}{15\!\cdots\!40}a^{17}-\frac{60\!\cdots\!99}{64\!\cdots\!60}a^{16}+\frac{43\!\cdots\!49}{23\!\cdots\!60}a^{15}+\frac{10\!\cdots\!45}{39\!\cdots\!36}a^{14}+\frac{15\!\cdots\!09}{42\!\cdots\!40}a^{13}-\frac{68\!\cdots\!13}{25\!\cdots\!40}a^{12}-\frac{35\!\cdots\!13}{42\!\cdots\!40}a^{11}-\frac{15\!\cdots\!57}{25\!\cdots\!20}a^{10}+\frac{26\!\cdots\!99}{42\!\cdots\!40}a^{9}+\frac{27\!\cdots\!27}{18\!\cdots\!40}a^{8}+\frac{11\!\cdots\!13}{89\!\cdots\!30}a^{7}-\frac{22\!\cdots\!93}{35\!\cdots\!20}a^{6}-\frac{36\!\cdots\!87}{26\!\cdots\!72}a^{5}-\frac{12\!\cdots\!24}{87\!\cdots\!65}a^{4}+\frac{17\!\cdots\!13}{19\!\cdots\!40}a^{3}+\frac{10\!\cdots\!93}{99\!\cdots\!70}a^{2}+\frac{34\!\cdots\!19}{33\!\cdots\!90}a-\frac{29\!\cdots\!33}{16\!\cdots\!45}$, $\frac{20\!\cdots\!71}{46\!\cdots\!20}a^{31}+\frac{38\!\cdots\!89}{57\!\cdots\!40}a^{30}+\frac{80\!\cdots\!43}{28\!\cdots\!20}a^{29}-\frac{38\!\cdots\!89}{96\!\cdots\!40}a^{28}-\frac{23\!\cdots\!51}{23\!\cdots\!60}a^{27}+\frac{13\!\cdots\!47}{36\!\cdots\!15}a^{26}-\frac{59\!\cdots\!63}{16\!\cdots\!40}a^{25}+\frac{47\!\cdots\!91}{11\!\cdots\!80}a^{24}-\frac{10\!\cdots\!77}{15\!\cdots\!40}a^{23}+\frac{61\!\cdots\!19}{48\!\cdots\!20}a^{22}-\frac{24\!\cdots\!55}{46\!\cdots\!12}a^{21}+\frac{13\!\cdots\!23}{11\!\cdots\!80}a^{20}-\frac{65\!\cdots\!11}{77\!\cdots\!20}a^{19}+\frac{56\!\cdots\!57}{14\!\cdots\!76}a^{18}-\frac{31\!\cdots\!99}{46\!\cdots\!12}a^{17}+\frac{54\!\cdots\!19}{57\!\cdots\!40}a^{16}-\frac{28\!\cdots\!49}{46\!\cdots\!20}a^{15}+\frac{45\!\cdots\!03}{11\!\cdots\!80}a^{14}+\frac{28\!\cdots\!17}{51\!\cdots\!68}a^{13}+\frac{57\!\cdots\!99}{12\!\cdots\!20}a^{12}-\frac{34\!\cdots\!77}{51\!\cdots\!68}a^{11}-\frac{18\!\cdots\!41}{12\!\cdots\!60}a^{10}-\frac{79\!\cdots\!33}{10\!\cdots\!60}a^{9}+\frac{29\!\cdots\!77}{21\!\cdots\!20}a^{8}+\frac{19\!\cdots\!83}{71\!\cdots\!40}a^{7}+\frac{25\!\cdots\!99}{13\!\cdots\!20}a^{6}-\frac{12\!\cdots\!77}{99\!\cdots\!70}a^{5}-\frac{98\!\cdots\!13}{38\!\cdots\!54}a^{4}-\frac{38\!\cdots\!53}{19\!\cdots\!40}a^{3}+\frac{71\!\cdots\!68}{49\!\cdots\!35}a^{2}+\frac{33\!\cdots\!39}{16\!\cdots\!45}a+\frac{28\!\cdots\!68}{16\!\cdots\!45}$, $\frac{38\!\cdots\!19}{77\!\cdots\!20}a^{31}-\frac{19\!\cdots\!11}{51\!\cdots\!80}a^{30}+\frac{15\!\cdots\!73}{30\!\cdots\!08}a^{29}-\frac{44\!\cdots\!83}{25\!\cdots\!40}a^{28}+\frac{58\!\cdots\!99}{15\!\cdots\!04}a^{27}-\frac{53\!\cdots\!88}{44\!\cdots\!15}a^{26}+\frac{11\!\cdots\!29}{32\!\cdots\!80}a^{25}-\frac{23\!\cdots\!99}{38\!\cdots\!60}a^{24}+\frac{10\!\cdots\!57}{77\!\cdots\!20}a^{23}-\frac{51\!\cdots\!71}{15\!\cdots\!40}a^{22}+\frac{76\!\cdots\!63}{15\!\cdots\!40}a^{21}-\frac{24\!\cdots\!97}{38\!\cdots\!60}a^{20}+\frac{69\!\cdots\!69}{38\!\cdots\!60}a^{19}-\frac{31\!\cdots\!71}{19\!\cdots\!80}a^{18}+\frac{75\!\cdots\!99}{12\!\cdots\!05}a^{17}-\frac{34\!\cdots\!23}{77\!\cdots\!20}a^{16}+\frac{25\!\cdots\!11}{38\!\cdots\!60}a^{15}+\frac{33\!\cdots\!79}{15\!\cdots\!40}a^{14}+\frac{16\!\cdots\!31}{51\!\cdots\!80}a^{13}+\frac{45\!\cdots\!63}{96\!\cdots\!40}a^{12}-\frac{13\!\cdots\!23}{25\!\cdots\!84}a^{11}-\frac{52\!\cdots\!33}{75\!\cdots\!60}a^{10}-\frac{12\!\cdots\!89}{53\!\cdots\!80}a^{9}+\frac{20\!\cdots\!37}{21\!\cdots\!32}a^{8}+\frac{49\!\cdots\!25}{35\!\cdots\!72}a^{7}+\frac{31\!\cdots\!71}{89\!\cdots\!30}a^{6}-\frac{16\!\cdots\!27}{19\!\cdots\!40}a^{5}-\frac{24\!\cdots\!27}{17\!\cdots\!30}a^{4}-\frac{13\!\cdots\!29}{49\!\cdots\!35}a^{3}+\frac{26\!\cdots\!66}{33\!\cdots\!09}a^{2}+\frac{36\!\cdots\!41}{33\!\cdots\!90}a+\frac{82\!\cdots\!98}{16\!\cdots\!45}$, $\frac{75\!\cdots\!01}{31\!\cdots\!72}a^{31}+\frac{20\!\cdots\!71}{15\!\cdots\!04}a^{30}+\frac{87\!\cdots\!71}{46\!\cdots\!20}a^{29}-\frac{11\!\cdots\!57}{23\!\cdots\!60}a^{28}+\frac{10\!\cdots\!81}{23\!\cdots\!60}a^{27}-\frac{28\!\cdots\!87}{11\!\cdots\!80}a^{26}+\frac{36\!\cdots\!35}{46\!\cdots\!12}a^{25}-\frac{47\!\cdots\!21}{51\!\cdots\!68}a^{24}+\frac{26\!\cdots\!73}{20\!\cdots\!72}a^{23}-\frac{38\!\cdots\!79}{95\!\cdots\!20}a^{22}-\frac{83\!\cdots\!03}{23\!\cdots\!60}a^{21}+\frac{24\!\cdots\!29}{14\!\cdots\!60}a^{20}+\frac{26\!\cdots\!63}{11\!\cdots\!80}a^{19}+\frac{71\!\cdots\!91}{11\!\cdots\!80}a^{18}-\frac{16\!\cdots\!55}{92\!\cdots\!24}a^{17}-\frac{37\!\cdots\!03}{29\!\cdots\!20}a^{16}+\frac{34\!\cdots\!31}{92\!\cdots\!40}a^{15}+\frac{78\!\cdots\!09}{48\!\cdots\!20}a^{14}+\frac{14\!\cdots\!03}{59\!\cdots\!40}a^{13}+\frac{16\!\cdots\!37}{12\!\cdots\!20}a^{12}-\frac{31\!\cdots\!31}{95\!\cdots\!20}a^{11}-\frac{45\!\cdots\!79}{75\!\cdots\!60}a^{10}-\frac{45\!\cdots\!51}{23\!\cdots\!80}a^{9}+\frac{72\!\cdots\!77}{10\!\cdots\!16}a^{8}+\frac{53\!\cdots\!97}{47\!\cdots\!96}a^{7}+\frac{33\!\cdots\!91}{59\!\cdots\!20}a^{6}-\frac{73\!\cdots\!67}{11\!\cdots\!24}a^{5}-\frac{12\!\cdots\!47}{11\!\cdots\!08}a^{4}-\frac{52\!\cdots\!23}{99\!\cdots\!70}a^{3}+\frac{49\!\cdots\!10}{76\!\cdots\!79}a^{2}+\frac{14\!\cdots\!67}{16\!\cdots\!45}a+\frac{85\!\cdots\!59}{16\!\cdots\!45}$, $\frac{18\!\cdots\!11}{77\!\cdots\!40}a^{31}+\frac{65\!\cdots\!63}{16\!\cdots\!80}a^{30}+\frac{17\!\cdots\!59}{90\!\cdots\!20}a^{29}-\frac{15\!\cdots\!71}{27\!\cdots\!36}a^{28}+\frac{10\!\cdots\!71}{13\!\cdots\!80}a^{27}-\frac{97\!\cdots\!89}{34\!\cdots\!20}a^{26}+\frac{60\!\cdots\!31}{68\!\cdots\!40}a^{25}-\frac{30\!\cdots\!61}{68\!\cdots\!40}a^{24}+\frac{25\!\cdots\!57}{16\!\cdots\!80}a^{23}-\frac{67\!\cdots\!49}{15\!\cdots\!72}a^{22}-\frac{23\!\cdots\!11}{90\!\cdots\!20}a^{21}+\frac{63\!\cdots\!63}{34\!\cdots\!92}a^{20}+\frac{81\!\cdots\!43}{68\!\cdots\!40}a^{19}+\frac{23\!\cdots\!71}{34\!\cdots\!20}a^{18}-\frac{14\!\cdots\!31}{68\!\cdots\!40}a^{17}-\frac{34\!\cdots\!87}{13\!\cdots\!80}a^{16}-\frac{67\!\cdots\!43}{75\!\cdots\!60}a^{15}+\frac{43\!\cdots\!63}{27\!\cdots\!60}a^{14}+\frac{17\!\cdots\!63}{90\!\cdots\!20}a^{13}+\frac{12\!\cdots\!33}{13\!\cdots\!40}a^{12}-\frac{22\!\cdots\!01}{75\!\cdots\!60}a^{11}-\frac{15\!\cdots\!37}{31\!\cdots\!20}a^{10}-\frac{29\!\cdots\!39}{25\!\cdots\!20}a^{9}+\frac{24\!\cdots\!31}{42\!\cdots\!20}a^{8}+\frac{32\!\cdots\!79}{35\!\cdots\!60}a^{7}+\frac{34\!\cdots\!39}{77\!\cdots\!80}a^{6}-\frac{12\!\cdots\!87}{23\!\cdots\!40}a^{5}-\frac{24\!\cdots\!73}{29\!\cdots\!70}a^{4}-\frac{12\!\cdots\!51}{29\!\cdots\!55}a^{3}+\frac{33\!\cdots\!41}{58\!\cdots\!31}a^{2}+\frac{63\!\cdots\!27}{97\!\cdots\!85}a+\frac{91\!\cdots\!02}{19\!\cdots\!77}$, $\frac{59\!\cdots\!39}{23\!\cdots\!60}a^{31}-\frac{16\!\cdots\!97}{46\!\cdots\!20}a^{30}+\frac{63\!\cdots\!99}{23\!\cdots\!60}a^{29}-\frac{24\!\cdots\!97}{23\!\cdots\!60}a^{28}+\frac{21\!\cdots\!39}{85\!\cdots\!80}a^{27}-\frac{95\!\cdots\!59}{12\!\cdots\!20}a^{26}+\frac{32\!\cdots\!91}{14\!\cdots\!60}a^{25}-\frac{50\!\cdots\!49}{11\!\cdots\!80}a^{24}+\frac{38\!\cdots\!71}{39\!\cdots\!36}a^{23}-\frac{22\!\cdots\!27}{10\!\cdots\!36}a^{22}+\frac{87\!\cdots\!07}{23\!\cdots\!60}a^{21}-\frac{40\!\cdots\!67}{77\!\cdots\!52}a^{20}+\frac{27\!\cdots\!67}{23\!\cdots\!60}a^{19}-\frac{43\!\cdots\!83}{28\!\cdots\!32}a^{18}+\frac{80\!\cdots\!93}{96\!\cdots\!40}a^{17}-\frac{62\!\cdots\!07}{23\!\cdots\!60}a^{16}+\frac{11\!\cdots\!17}{23\!\cdots\!60}a^{15}+\frac{37\!\cdots\!51}{46\!\cdots\!20}a^{14}+\frac{87\!\cdots\!63}{77\!\cdots\!20}a^{13}-\frac{22\!\cdots\!27}{38\!\cdots\!60}a^{12}-\frac{12\!\cdots\!87}{51\!\cdots\!68}a^{11}-\frac{51\!\cdots\!07}{25\!\cdots\!20}a^{10}+\frac{39\!\cdots\!95}{28\!\cdots\!76}a^{9}+\frac{93\!\cdots\!43}{21\!\cdots\!32}a^{8}+\frac{30\!\cdots\!87}{71\!\cdots\!40}a^{7}-\frac{14\!\cdots\!03}{11\!\cdots\!24}a^{6}-\frac{46\!\cdots\!59}{11\!\cdots\!40}a^{5}-\frac{43\!\cdots\!72}{97\!\cdots\!85}a^{4}+\frac{12\!\cdots\!77}{66\!\cdots\!80}a^{3}+\frac{10\!\cdots\!69}{33\!\cdots\!90}a^{2}+\frac{11\!\cdots\!23}{33\!\cdots\!90}a+\frac{17\!\cdots\!89}{16\!\cdots\!45}$, $\frac{12\!\cdots\!61}{27\!\cdots\!60}a^{31}-\frac{16\!\cdots\!49}{27\!\cdots\!60}a^{30}+\frac{10\!\cdots\!13}{27\!\cdots\!60}a^{29}-\frac{16\!\cdots\!53}{13\!\cdots\!80}a^{28}+\frac{98\!\cdots\!81}{45\!\cdots\!60}a^{27}-\frac{43\!\cdots\!83}{56\!\cdots\!20}a^{26}+\frac{78\!\cdots\!53}{34\!\cdots\!20}a^{25}-\frac{58\!\cdots\!44}{21\!\cdots\!95}a^{24}+\frac{13\!\cdots\!13}{18\!\cdots\!24}a^{23}-\frac{16\!\cdots\!41}{90\!\cdots\!20}a^{22}+\frac{46\!\cdots\!41}{27\!\cdots\!60}a^{21}-\frac{52\!\cdots\!63}{66\!\cdots\!20}a^{20}+\frac{61\!\cdots\!93}{68\!\cdots\!40}a^{19}+\frac{14\!\cdots\!51}{34\!\cdots\!20}a^{18}-\frac{88\!\cdots\!67}{45\!\cdots\!60}a^{17}-\frac{34\!\cdots\!67}{13\!\cdots\!80}a^{16}+\frac{64\!\cdots\!39}{27\!\cdots\!60}a^{15}+\frac{13\!\cdots\!63}{54\!\cdots\!72}a^{14}+\frac{32\!\cdots\!13}{90\!\cdots\!20}a^{13}+\frac{11\!\cdots\!01}{75\!\cdots\!60}a^{12}-\frac{19\!\cdots\!71}{37\!\cdots\!80}a^{11}-\frac{12\!\cdots\!27}{15\!\cdots\!52}a^{10}-\frac{39\!\cdots\!47}{19\!\cdots\!40}a^{9}+\frac{12\!\cdots\!79}{12\!\cdots\!96}a^{8}+\frac{35\!\cdots\!57}{21\!\cdots\!60}a^{7}+\frac{15\!\cdots\!57}{21\!\cdots\!60}a^{6}-\frac{63\!\cdots\!53}{70\!\cdots\!20}a^{5}-\frac{13\!\cdots\!02}{87\!\cdots\!65}a^{4}-\frac{39\!\cdots\!27}{58\!\cdots\!31}a^{3}+\frac{19\!\cdots\!83}{19\!\cdots\!70}a^{2}+\frac{12\!\cdots\!02}{97\!\cdots\!85}a+\frac{59\!\cdots\!97}{74\!\cdots\!45}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 97772762708.42017 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{16}\cdot 97772762708.42017 \cdot 12}{24\cdot\sqrt{1156745857256138299057661301456078800598048178176}}\cr\approx \mathstrut & 0.268192611147582 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^32 + 10*x^30 - 28*x^29 + 56*x^28 - 208*x^27 + 604*x^26 - 876*x^25 + 2547*x^24 - 5760*x^23 + 7684*x^22 - 11384*x^21 + 37676*x^20 - 21776*x^19 + 12262*x^18 - 135456*x^17 + 96553*x^16 + 443172*x^15 + 1107228*x^14 + 758160*x^13 - 662400*x^12 - 2309040*x^11 - 1681344*x^10 + 1407456*x^9 + 4596912*x^8 + 3872448*x^7 - 62208*x^6 - 4385664*x^5 - 3545856*x^4 + 3919104*x^2 + 3359232*x + 1679616)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^32 + 10*x^30 - 28*x^29 + 56*x^28 - 208*x^27 + 604*x^26 - 876*x^25 + 2547*x^24 - 5760*x^23 + 7684*x^22 - 11384*x^21 + 37676*x^20 - 21776*x^19 + 12262*x^18 - 135456*x^17 + 96553*x^16 + 443172*x^15 + 1107228*x^14 + 758160*x^13 - 662400*x^12 - 2309040*x^11 - 1681344*x^10 + 1407456*x^9 + 4596912*x^8 + 3872448*x^7 - 62208*x^6 - 4385664*x^5 - 3545856*x^4 + 3919104*x^2 + 3359232*x + 1679616, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^32 + 10*x^30 - 28*x^29 + 56*x^28 - 208*x^27 + 604*x^26 - 876*x^25 + 2547*x^24 - 5760*x^23 + 7684*x^22 - 11384*x^21 + 37676*x^20 - 21776*x^19 + 12262*x^18 - 135456*x^17 + 96553*x^16 + 443172*x^15 + 1107228*x^14 + 758160*x^13 - 662400*x^12 - 2309040*x^11 - 1681344*x^10 + 1407456*x^9 + 4596912*x^8 + 3872448*x^7 - 62208*x^6 - 4385664*x^5 - 3545856*x^4 + 3919104*x^2 + 3359232*x + 1679616);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^32 + 10*x^30 - 28*x^29 + 56*x^28 - 208*x^27 + 604*x^26 - 876*x^25 + 2547*x^24 - 5760*x^23 + 7684*x^22 - 11384*x^21 + 37676*x^20 - 21776*x^19 + 12262*x^18 - 135456*x^17 + 96553*x^16 + 443172*x^15 + 1107228*x^14 + 758160*x^13 - 662400*x^12 - 2309040*x^11 - 1681344*x^10 + 1407456*x^9 + 4596912*x^8 + 3872448*x^7 - 62208*x^6 - 4385664*x^5 - 3545856*x^4 + 3919104*x^2 + 3359232*x + 1679616);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2\times D_4^2$ (as 32T1016):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 128
The 50 conjugacy class representatives for $C_2\times D_4^2$
Character table for $C_2\times D_4^2$

Intermediate fields

\(\Q(\sqrt{-2}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{-6}) \), \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{6}) \), 4.0.1088.2, 4.4.4352.1, 4.0.39168.3, 4.4.9792.1, \(\Q(i, \sqrt{6})\), 4.0.29952.1, \(\Q(\sqrt{2}, \sqrt{-3})\), \(\Q(\sqrt{-2}, \sqrt{3})\), 4.0.7488.1, \(\Q(\zeta_{8})\), \(\Q(\zeta_{12})\), 4.4.29952.1, \(\Q(\sqrt{-2}, \sqrt{-3})\), \(\Q(\sqrt{2}, \sqrt{3})\), 4.4.7488.1, 8.0.897122304.10, 8.0.3588489216.11, 8.0.3588489216.5, 8.0.3588489216.16, \(\Q(\zeta_{24})\), 8.0.56070144.2, 8.8.3588489216.1, 8.0.1534132224.10, 8.0.95883264.1, 8.0.18939904.2, 8.0.1534132224.8, 8.8.1037073383424.1, 8.0.1534132224.4, 8.0.1037073383424.57, 8.8.1534132224.1, 16.0.12877254853348294656.1, 16.0.1075521202606502917963776.1, 16.0.1075521202606502917963776.3, 16.0.1075521202606502917963776.4, 16.0.2353561680715186176.2, 16.16.1075521202606502917963776.1, 16.0.1075521202606502917963776.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 32 siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R ${\href{/padicField/5.4.0.1}{4} }^{8}$ ${\href{/padicField/7.4.0.1}{4} }^{8}$ ${\href{/padicField/11.4.0.1}{4} }^{8}$ R R ${\href{/padicField/19.4.0.1}{4} }^{8}$ ${\href{/padicField/23.2.0.1}{2} }^{16}$ ${\href{/padicField/29.4.0.1}{4} }^{8}$ ${\href{/padicField/31.4.0.1}{4} }^{8}$ ${\href{/padicField/37.4.0.1}{4} }^{8}$ ${\href{/padicField/41.4.0.1}{4} }^{8}$ ${\href{/padicField/43.2.0.1}{2} }^{16}$ ${\href{/padicField/47.2.0.1}{2} }^{16}$ ${\href{/padicField/53.2.0.1}{2} }^{16}$ ${\href{/padicField/59.2.0.1}{2} }^{16}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.16.36.1$x^{16} + 8 x^{12} + 8 x^{11} + 24 x^{10} + 44 x^{8} - 16 x^{7} + 16 x^{6} - 56 x^{4} + 112 x^{3} + 196$$8$$2$$36$$D_4\times C_2$$[2, 2, 3]^{2}$
2.16.36.1$x^{16} + 8 x^{12} + 8 x^{11} + 24 x^{10} + 44 x^{8} - 16 x^{7} + 16 x^{6} - 56 x^{4} + 112 x^{3} + 196$$8$$2$$36$$D_4\times C_2$$[2, 2, 3]^{2}$
\(3\) Copy content Toggle raw display 3.8.4.1$x^{8} + 4 x^{7} + 16 x^{6} + 36 x^{5} + 94 x^{4} + 116 x^{3} + 144 x^{2} + 36 x + 229$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
3.8.4.1$x^{8} + 4 x^{7} + 16 x^{6} + 36 x^{5} + 94 x^{4} + 116 x^{3} + 144 x^{2} + 36 x + 229$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
3.8.4.1$x^{8} + 4 x^{7} + 16 x^{6} + 36 x^{5} + 94 x^{4} + 116 x^{3} + 144 x^{2} + 36 x + 229$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
3.8.4.1$x^{8} + 4 x^{7} + 16 x^{6} + 36 x^{5} + 94 x^{4} + 116 x^{3} + 144 x^{2} + 36 x + 229$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
\(13\) Copy content Toggle raw display 13.2.0.1$x^{2} + 12 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.2.0.1$x^{2} + 12 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.2.0.1$x^{2} + 12 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.2.0.1$x^{2} + 12 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.2.0.1$x^{2} + 12 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.2.0.1$x^{2} + 12 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.2.0.1$x^{2} + 12 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.2.0.1$x^{2} + 12 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.4.2.1$x^{4} + 284 x^{3} + 21754 x^{2} + 225780 x + 59193$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
13.4.2.1$x^{4} + 284 x^{3} + 21754 x^{2} + 225780 x + 59193$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
13.4.2.1$x^{4} + 284 x^{3} + 21754 x^{2} + 225780 x + 59193$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
13.4.2.1$x^{4} + 284 x^{3} + 21754 x^{2} + 225780 x + 59193$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
\(17\) Copy content Toggle raw display 17.2.0.1$x^{2} + 16 x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
17.2.0.1$x^{2} + 16 x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
17.2.0.1$x^{2} + 16 x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
17.2.0.1$x^{2} + 16 x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
17.2.0.1$x^{2} + 16 x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
17.2.0.1$x^{2} + 16 x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
17.2.0.1$x^{2} + 16 x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
17.2.0.1$x^{2} + 16 x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
17.4.2.1$x^{4} + 338 x^{3} + 31049 x^{2} + 420472 x + 123735$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
17.4.2.1$x^{4} + 338 x^{3} + 31049 x^{2} + 420472 x + 123735$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
17.4.2.1$x^{4} + 338 x^{3} + 31049 x^{2} + 420472 x + 123735$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
17.4.2.1$x^{4} + 338 x^{3} + 31049 x^{2} + 420472 x + 123735$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$