Normalized defining polynomial
\( x^{32} - 11x^{28} + 62x^{24} - 260x^{20} + 1041x^{16} - 4160x^{12} + 15872x^{8} - 45056x^{4} + 65536 \)
Invariants
Degree: | $32$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 16]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(11242761639679742219392447654740052674625150753177600000000\) \(\medspace = 2^{64}\cdot 5^{8}\cdot 29^{16}\cdot 281^{4}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(65.18\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{2}5^{1/2}29^{1/2}281^{1/2}\approx 807.4156302673364$ | ||
Ramified primes: | \(2\), \(5\), \(29\), \(281\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Aut(K/\Q) }$: | $8$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is a CM field. | |||
Reflex fields: | unavailable$^{32768}$ |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{5}a^{16}+\frac{2}{5}a^{12}-\frac{1}{5}a^{8}+\frac{2}{5}a^{4}+\frac{1}{5}$, $\frac{1}{10}a^{17}-\frac{3}{10}a^{13}+\frac{2}{5}a^{9}+\frac{1}{5}a^{5}+\frac{1}{10}a$, $\frac{1}{20}a^{18}-\frac{3}{20}a^{14}-\frac{3}{10}a^{10}-\frac{2}{5}a^{6}+\frac{1}{20}a^{2}$, $\frac{1}{40}a^{19}-\frac{3}{40}a^{15}+\frac{7}{20}a^{11}+\frac{3}{10}a^{7}+\frac{1}{40}a^{3}$, $\frac{1}{80}a^{20}+\frac{1}{16}a^{16}+\frac{3}{8}a^{12}-\frac{9}{20}a^{8}+\frac{17}{80}a^{4}-\frac{2}{5}$, $\frac{1}{160}a^{21}+\frac{1}{32}a^{17}-\frac{5}{16}a^{13}-\frac{9}{40}a^{9}+\frac{17}{160}a^{5}+\frac{3}{10}a$, $\frac{1}{320}a^{22}+\frac{1}{64}a^{18}-\frac{5}{32}a^{14}-\frac{9}{80}a^{10}+\frac{17}{320}a^{6}-\frac{7}{20}a^{2}$, $\frac{1}{640}a^{23}+\frac{1}{128}a^{19}+\frac{27}{64}a^{15}-\frac{9}{160}a^{11}-\frac{303}{640}a^{7}+\frac{13}{40}a^{3}$, $\frac{1}{24320}a^{24}-\frac{59}{24320}a^{20}+\frac{679}{12160}a^{16}+\frac{43}{1216}a^{12}-\frac{10287}{24320}a^{8}-\frac{279}{1520}a^{4}+\frac{16}{95}$, $\frac{1}{48640}a^{25}-\frac{59}{48640}a^{21}+\frac{679}{24320}a^{17}-\frac{1173}{2432}a^{13}+\frac{14033}{48640}a^{9}-\frac{279}{3040}a^{5}-\frac{79}{190}a$, $\frac{1}{97280}a^{26}-\frac{59}{97280}a^{22}+\frac{679}{48640}a^{18}+\frac{1259}{4864}a^{14}+\frac{14033}{97280}a^{10}+\frac{2761}{6080}a^{6}-\frac{79}{380}a^{2}$, $\frac{1}{194560}a^{27}-\frac{59}{194560}a^{23}+\frac{679}{97280}a^{19}+\frac{1259}{9728}a^{15}+\frac{14033}{194560}a^{11}-\frac{3319}{12160}a^{7}+\frac{301}{760}a^{3}$, $\frac{1}{13619200}a^{28}+\frac{7}{389120}a^{24}+\frac{40351}{6809600}a^{20}+\frac{133823}{3404800}a^{16}+\frac{3388433}{13619200}a^{12}-\frac{80093}{212800}a^{8}+\frac{43}{380}a^{4}+\frac{16}{175}$, $\frac{1}{27238400}a^{29}+\frac{7}{778240}a^{25}+\frac{40351}{13619200}a^{21}+\frac{133823}{6809600}a^{17}-\frac{10230767}{27238400}a^{13}-\frac{80093}{425600}a^{9}+\frac{43}{760}a^{5}+\frac{8}{175}a$, $\frac{1}{54476800}a^{30}+\frac{7}{1556480}a^{26}+\frac{40351}{27238400}a^{22}+\frac{133823}{13619200}a^{18}-\frac{10230767}{54476800}a^{14}-\frac{80093}{851200}a^{10}-\frac{717}{1520}a^{6}+\frac{4}{175}a^{2}$, $\frac{1}{108953600}a^{31}+\frac{7}{3112960}a^{27}+\frac{40351}{54476800}a^{23}+\frac{133823}{27238400}a^{19}+\frac{44246033}{108953600}a^{15}+\frac{771107}{1702400}a^{11}-\frac{717}{3040}a^{7}-\frac{171}{350}a^{3}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $5$ |
Class group and class number
$C_{3}\times C_{186}$, which has order $558$ (assuming GRH)
Relative class number: $558$ (assuming GRH)
Unit group
Rank: | $15$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -\frac{3351}{27238400} a^{29} + \frac{623}{778240} a^{25} - \frac{53201}{13619200} a^{21} + \frac{98687}{6809600} a^{17} - \frac{1407303}{27238400} a^{13} + \frac{379807}{1702400} a^{9} - \frac{2339}{3040} a^{5} + \frac{3818}{3325} a \) (order $8$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{431}{27238400}a^{29}-\frac{279}{778240}a^{25}+\frac{25121}{13619200}a^{21}-\frac{43167}{6809600}a^{17}+\frac{646943}{27238400}a^{13}-\frac{35531}{851200}a^{9}+\frac{253}{1520}a^{5}-\frac{6281}{6650}a$, $\frac{543}{13619200}a^{31}-\frac{123}{389120}a^{27}+\frac{11163}{6809600}a^{23}-\frac{23721}{3404800}a^{19}+\frac{297279}{13619200}a^{15}-\frac{312479}{3404800}a^{11}+\frac{5777}{12160}a^{7}-\frac{18209}{26600}a^{3}$, $\frac{723}{10895360}a^{30}-\frac{3351}{27238400}a^{29}-\frac{743}{1556480}a^{26}+\frac{623}{778240}a^{25}+\frac{10989}{5447680}a^{22}-\frac{53201}{13619200}a^{21}-\frac{22707}{2723840}a^{18}+\frac{98687}{6809600}a^{17}+\frac{440067}{10895360}a^{14}-\frac{1407303}{27238400}a^{13}-\frac{2833}{21280}a^{10}+\frac{379807}{1702400}a^{9}+\frac{2929}{6080}a^{6}-\frac{2339}{3040}a^{5}-\frac{2311}{2660}a^{2}+\frac{3818}{3325}a-1$, $\frac{1}{77824}a^{28}+\frac{73}{389120}a^{24}-\frac{33}{38912}a^{20}-\frac{453}{97280}a^{16}+\frac{7253}{389120}a^{12}+\frac{237}{6080}a^{8}-\frac{59}{304}a^{4}-\frac{12}{95}$, $\frac{3443}{27238400}a^{31}+\frac{559}{2723840}a^{30}-\frac{4943}{13619200}a^{29}-\frac{863}{778240}a^{27}-\frac{491}{389120}a^{26}+\frac{9}{4096}a^{25}+\frac{60463}{13619200}a^{23}+\frac{8397}{1361920}a^{22}-\frac{68113}{6809600}a^{21}-\frac{131821}{6809600}a^{19}-\frac{15691}{680960}a^{18}+\frac{133871}{3404800}a^{17}+\frac{1978579}{27238400}a^{15}+\frac{59251}{544768}a^{14}-\frac{2183999}{13619200}a^{13}-\frac{2180579}{6809600}a^{11}-\frac{127317}{340480}a^{10}+\frac{142729}{212800}a^{9}+\frac{181}{160}a^{7}+\frac{8589}{6080}a^{6}-\frac{7101}{3040}a^{5}-\frac{68367}{26600}a^{3}-\frac{5647}{2660}a^{2}+\frac{13598}{3325}a$, $\frac{321}{3404800}a^{31}-\frac{1}{28672}a^{30}-\frac{39}{194560}a^{28}-\frac{61}{97280}a^{27}+\frac{13}{20480}a^{26}+\frac{221}{194560}a^{24}+\frac{3441}{1702400}a^{23}-\frac{45}{14336}a^{22}-\frac{77}{19456}a^{20}-\frac{7347}{851200}a^{19}+\frac{87}{7168}a^{18}+\frac{1071}{48640}a^{16}+\frac{138433}{3404800}a^{15}-\frac{5861}{143360}a^{14}-\frac{15959}{194560}a^{12}-\frac{111043}{851200}a^{11}+\frac{6633}{35840}a^{10}+\frac{659}{2432}a^{8}+\frac{1211}{3040}a^{7}-\frac{33}{40}a^{6}-\frac{1649}{1520}a^{4}-\frac{8237}{26600}a^{3}+\frac{51}{28}a^{2}+\frac{42}{19}$, $\frac{599}{108953600}a^{31}+\frac{159}{3404800}a^{29}+\frac{3}{194560}a^{28}+\frac{113}{3112960}a^{27}-\frac{3}{5120}a^{25}-\frac{169}{194560}a^{24}-\frac{47231}{54476800}a^{23}+\frac{2797}{851200}a^{21}+\frac{117}{19456}a^{20}+\frac{99857}{27238400}a^{19}-\frac{2207}{212800}a^{17}-\frac{179}{9728}a^{16}-\frac{505593}{108953600}a^{15}+\frac{144167}{3404800}a^{13}+\frac{14931}{194560}a^{12}+\frac{94887}{6809600}a^{11}-\frac{429899}{1702400}a^{9}-\frac{9529}{24320}a^{8}-\frac{19}{128}a^{7}+\frac{2987}{3040}a^{5}+\frac{377}{380}a^{4}+\frac{6711}{26600}a^{3}-\frac{5701}{3325}a-\frac{174}{95}$, $\frac{6367}{108953600}a^{31}+\frac{43}{851200}a^{30}+\frac{67}{425600}a^{28}-\frac{1511}{3112960}a^{27}-\frac{3}{6080}a^{26}-\frac{21}{12160}a^{24}+\frac{103297}{54476800}a^{23}+\frac{1511}{851200}a^{22}+\frac{39}{5600}a^{20}-\frac{224159}{27238400}a^{19}-\frac{3457}{425600}a^{18}-\frac{383}{13300}a^{16}+\frac{3490511}{108953600}a^{15}+\frac{1061}{44800}a^{14}+\frac{50571}{425600}a^{12}-\frac{211571}{1702400}a^{11}-\frac{98251}{851200}a^{10}-\frac{112047}{212800}a^{8}+\frac{1219}{3040}a^{7}+\frac{1947}{6080}a^{6}+\frac{1381}{760}a^{4}-\frac{10851}{13300}a^{3}-\frac{10147}{13300}a^{2}-\frac{16059}{3325}$, $\frac{319}{54476800}a^{30}-\frac{103}{851200}a^{28}-\frac{967}{1556480}a^{26}-\frac{7}{24320}a^{24}+\frac{88289}{27238400}a^{22}+\frac{521}{212800}a^{20}-\frac{143743}{13619200}a^{18}-\frac{59}{13300}a^{16}+\frac{157173}{2867200}a^{14}+\frac{24561}{851200}a^{12}-\frac{173897}{851200}a^{10}-\frac{60577}{425600}a^{8}+\frac{5237}{6080}a^{6}+\frac{577}{760}a^{4}-\frac{31649}{13300}a^{2}-\frac{13372}{3325}$, $\frac{6367}{108953600}a^{31}+\frac{543}{2867200}a^{30}-\frac{3351}{13619200}a^{28}-\frac{1511}{3112960}a^{27}-\frac{1989}{1556480}a^{26}+\frac{623}{389120}a^{24}+\frac{103297}{54476800}a^{23}+\frac{161347}{27238400}a^{22}-\frac{53201}{6809600}a^{20}-\frac{224159}{27238400}a^{19}-\frac{310909}{13619200}a^{18}+\frac{98687}{3404800}a^{16}+\frac{3490511}{108953600}a^{15}+\frac{5014941}{54476800}a^{14}-\frac{1407303}{13619200}a^{12}-\frac{211571}{1702400}a^{11}-\frac{606447}{1702400}a^{10}+\frac{379807}{851200}a^{8}+\frac{1219}{3040}a^{7}+\frac{7607}{6080}a^{6}-\frac{2339}{1520}a^{4}-\frac{10851}{13300}a^{3}-\frac{26827}{13300}a^{2}+\frac{10961}{3325}$, $\frac{6911}{108953600}a^{31}-\frac{887}{6809600}a^{29}-\frac{519}{3112960}a^{27}+\frac{219}{194560}a^{25}+\frac{21601}{54476800}a^{23}-\frac{17207}{3404800}a^{21}-\frac{83327}{27238400}a^{19}+\frac{37549}{1702400}a^{17}+\frac{1414383}{108953600}a^{15}-\frac{458551}{6809600}a^{13}-\frac{52743}{1702400}a^{11}+\frac{508981}{1702400}a^{9}+\frac{621}{12160}a^{7}-\frac{1931}{1520}a^{5}+\frac{8539}{26600}a^{3}+\frac{7089}{3325}a$, $\frac{13753}{108953600}a^{31}+\frac{2329}{10895360}a^{30}-\frac{349}{1089536}a^{29}-\frac{2437}{6809600}a^{28}-\frac{2961}{3112960}a^{27}-\frac{2117}{1556480}a^{26}+\frac{1773}{778240}a^{25}+\frac{557}{194560}a^{24}+\frac{192823}{54476800}a^{23}+\frac{5939}{1089536}a^{22}-\frac{24079}{2723840}a^{21}-\frac{37187}{3404800}a^{20}-\frac{421961}{27238400}a^{19}-\frac{57457}{2723840}a^{18}+\frac{46353}{1361920}a^{17}+\frac{86509}{1702400}a^{16}+\frac{5897929}{108953600}a^{15}+\frac{937449}{10895360}a^{14}-\frac{785377}{5447680}a^{13}-\frac{1367701}{6809600}a^{12}-\frac{726513}{3404800}a^{11}-\frac{257937}{680960}a^{10}+\frac{49047}{85120}a^{9}+\frac{339419}{425600}a^{8}+\frac{9639}{12160}a^{7}+\frac{865}{608}a^{6}-\frac{6817}{3040}a^{5}-\frac{4411}{1520}a^{4}-\frac{12519}{13300}a^{3}-\frac{2677}{1330}a^{2}+\frac{5083}{1330}a+\frac{13434}{3325}$, $\frac{503}{5447680}a^{31}+\frac{1901}{7782400}a^{30}-\frac{543}{2723840}a^{29}-\frac{3603}{6809600}a^{28}-\frac{239}{778240}a^{27}-\frac{3299}{1556480}a^{26}+\frac{79}{77824}a^{25}+\frac{899}{194560}a^{24}+\frac{607}{544768}a^{23}+\frac{37331}{3891200}a^{22}-\frac{1233}{272384}a^{21}-\frac{70673}{3404800}a^{20}-\frac{733}{272384}a^{19}-\frac{79117}{1945600}a^{18}+\frac{2535}{136192}a^{17}+\frac{149031}{1702400}a^{16}+\frac{1515}{1089536}a^{15}+\frac{1307453}{7782400}a^{14}-\frac{166127}{2723840}a^{13}-\frac{137521}{358400}a^{12}+\frac{2913}{272384}a^{11}-\frac{9661}{15200}a^{10}+\frac{65943}{340480}a^{9}+\frac{1298187}{851200}a^{8}-\frac{651}{12160}a^{7}+\frac{2739}{1216}a^{6}-\frac{89}{160}a^{5}-\frac{8383}{1520}a^{4}+\frac{569}{665}a^{3}-\frac{2019}{475}a^{2}-\frac{278}{665}a+\frac{36111}{3325}$, $\frac{647}{3891200}a^{31}-\frac{1893}{10895360}a^{30}-\frac{2131}{5447680}a^{29}+\frac{319}{680960}a^{28}-\frac{1109}{778240}a^{27}+\frac{2209}{1556480}a^{26}+\frac{571}{155648}a^{25}-\frac{21}{5120}a^{24}+\frac{11827}{1945600}a^{23}-\frac{39699}{5447680}a^{22}-\frac{39629}{2723840}a^{21}+\frac{6431}{340480}a^{20}-\frac{25609}{972800}a^{19}+\frac{73117}{2723840}a^{18}+\frac{84051}{1361920}a^{17}-\frac{2353}{34048}a^{16}+\frac{367591}{3891200}a^{15}-\frac{1190389}{10895360}a^{14}-\frac{1345411}{5447680}a^{13}+\frac{205439}{680960}a^{12}-\frac{400791}{972800}a^{11}+\frac{58001}{136192}a^{10}+\frac{87133}{85120}a^{9}-\frac{42025}{34048}a^{8}+\frac{19533}{12160}a^{7}-\frac{2669}{1520}a^{6}-\frac{65}{19}a^{5}+\frac{6381}{1520}a^{4}-\frac{1546}{475}a^{3}+\frac{10841}{2660}a^{2}+\frac{4717}{665}a-\frac{1249}{133}$, $\frac{4329}{108953600}a^{31}-\frac{53}{7782400}a^{30}+\frac{183}{1361920}a^{29}+\frac{483}{1945600}a^{28}-\frac{1633}{3112960}a^{27}+\frac{123}{1556480}a^{26}-\frac{203}{194560}a^{25}-\frac{717}{389120}a^{24}+\frac{130839}{54476800}a^{23}+\frac{1637}{3891200}a^{22}+\frac{541}{136192}a^{21}+\frac{6493}{972800}a^{20}-\frac{276873}{27238400}a^{19}-\frac{13019}{1945600}a^{18}-\frac{5071}{340480}a^{17}-\frac{17411}{486400}a^{16}+\frac{5656697}{108953600}a^{15}+\frac{160251}{7782400}a^{14}+\frac{21627}{272384}a^{13}+\frac{282899}{1945600}a^{12}-\frac{165671}{851200}a^{11}-\frac{19557}{243200}a^{10}-\frac{34807}{85120}a^{9}-\frac{2283}{3800}a^{8}+\frac{2551}{6080}a^{7}+\frac{373}{1216}a^{6}+\frac{699}{608}a^{5}+\frac{1973}{760}a^{4}-\frac{15917}{13300}a^{3}-\frac{1847}{1900}a^{2}-\frac{2529}{1330}a-\frac{3113}{475}$ (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 70769362065553.12 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{16}\cdot 70769362065553.12 \cdot 558}{8\cdot\sqrt{11242761639679742219392447654740052674625150753177600000000}}\cr\approx \mathstrut & 0.274682432590373 \end{aligned}\] (assuming GRH)
Galois group
$D_4^2:C_2^3$ (as 32T12882):
A solvable group of order 512 |
The 80 conjugacy class representatives for $D_4^2:C_2^3$ |
Character table for $D_4^2:C_2^3$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 32 siblings: | data not computed |
Minimal sibling: | not computed |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.8.0.1}{8} }^{4}$ | R | ${\href{/padicField/7.4.0.1}{4} }^{4}{,}\,{\href{/padicField/7.2.0.1}{2} }^{8}$ | ${\href{/padicField/11.4.0.1}{4} }^{4}{,}\,{\href{/padicField/11.2.0.1}{2} }^{8}$ | ${\href{/padicField/13.4.0.1}{4} }^{4}{,}\,{\href{/padicField/13.2.0.1}{2} }^{8}$ | ${\href{/padicField/17.4.0.1}{4} }^{8}$ | ${\href{/padicField/19.4.0.1}{4} }^{4}{,}\,{\href{/padicField/19.2.0.1}{2} }^{8}$ | ${\href{/padicField/23.4.0.1}{4} }^{4}{,}\,{\href{/padicField/23.2.0.1}{2} }^{8}$ | R | ${\href{/padicField/31.4.0.1}{4} }^{8}$ | ${\href{/padicField/37.8.0.1}{8} }^{4}$ | ${\href{/padicField/41.4.0.1}{4} }^{4}{,}\,{\href{/padicField/41.2.0.1}{2} }^{8}$ | ${\href{/padicField/43.4.0.1}{4} }^{8}$ | ${\href{/padicField/47.8.0.1}{8} }^{4}$ | ${\href{/padicField/53.4.0.1}{4} }^{4}{,}\,{\href{/padicField/53.2.0.1}{2} }^{8}$ | ${\href{/padicField/59.4.0.1}{4} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | Deg $16$ | $4$ | $4$ | $32$ | |||
Deg $16$ | $4$ | $4$ | $32$ | ||||
\(5\) | 5.2.0.1 | $x^{2} + 4 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
5.2.0.1 | $x^{2} + 4 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
5.2.0.1 | $x^{2} + 4 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
5.2.0.1 | $x^{2} + 4 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
5.2.0.1 | $x^{2} + 4 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
5.2.0.1 | $x^{2} + 4 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
5.2.0.1 | $x^{2} + 4 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
5.2.0.1 | $x^{2} + 4 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
5.4.2.1 | $x^{4} + 48 x^{3} + 670 x^{2} + 2256 x + 1449$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
5.4.2.1 | $x^{4} + 48 x^{3} + 670 x^{2} + 2256 x + 1449$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
5.4.2.1 | $x^{4} + 48 x^{3} + 670 x^{2} + 2256 x + 1449$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
5.4.2.1 | $x^{4} + 48 x^{3} + 670 x^{2} + 2256 x + 1449$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
\(29\) | 29.4.2.1 | $x^{4} + 1440 x^{3} + 535166 x^{2} + 12071520 x + 1504089$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
29.4.2.1 | $x^{4} + 1440 x^{3} + 535166 x^{2} + 12071520 x + 1504089$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
29.4.2.1 | $x^{4} + 1440 x^{3} + 535166 x^{2} + 12071520 x + 1504089$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
29.4.2.1 | $x^{4} + 1440 x^{3} + 535166 x^{2} + 12071520 x + 1504089$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
29.4.2.1 | $x^{4} + 1440 x^{3} + 535166 x^{2} + 12071520 x + 1504089$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
29.4.2.1 | $x^{4} + 1440 x^{3} + 535166 x^{2} + 12071520 x + 1504089$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
29.4.2.1 | $x^{4} + 1440 x^{3} + 535166 x^{2} + 12071520 x + 1504089$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
29.4.2.1 | $x^{4} + 1440 x^{3} + 535166 x^{2} + 12071520 x + 1504089$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
\(281\) | $\Q_{281}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{281}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{281}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{281}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{281}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{281}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{281}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{281}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{281}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{281}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{281}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{281}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{281}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{281}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{281}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{281}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |