Properties

Label 32.0.112...000.1
Degree $32$
Signature $[0, 16]$
Discriminant $1.124\times 10^{58}$
Root discriminant \(65.18\)
Ramified primes $2,5,29,281$
Class number $558$ (GRH)
Class group [3, 186] (GRH)
Galois group $D_4^2:C_2^3$ (as 32T12882)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^32 - 11*x^28 + 62*x^24 - 260*x^20 + 1041*x^16 - 4160*x^12 + 15872*x^8 - 45056*x^4 + 65536)
 
gp: K = bnfinit(y^32 - 11*y^28 + 62*y^24 - 260*y^20 + 1041*y^16 - 4160*y^12 + 15872*y^8 - 45056*y^4 + 65536, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^32 - 11*x^28 + 62*x^24 - 260*x^20 + 1041*x^16 - 4160*x^12 + 15872*x^8 - 45056*x^4 + 65536);
 
oscar: Qx, x = polynomial_ring(QQ); K, a = number_field(x^32 - 11*x^28 + 62*x^24 - 260*x^20 + 1041*x^16 - 4160*x^12 + 15872*x^8 - 45056*x^4 + 65536)
 

\( x^{32} - 11x^{28} + 62x^{24} - 260x^{20} + 1041x^{16} - 4160x^{12} + 15872x^{8} - 45056x^{4} + 65536 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $32$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 16]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(11242761639679742219392447654740052674625150753177600000000\) \(\medspace = 2^{64}\cdot 5^{8}\cdot 29^{16}\cdot 281^{4}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(65.18\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{2}5^{1/2}29^{1/2}281^{1/2}\approx 807.4156302673364$
Ramified primes:   \(2\), \(5\), \(29\), \(281\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $8$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is a CM field.
Reflex fields:  unavailable$^{32768}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{5}a^{16}+\frac{2}{5}a^{12}-\frac{1}{5}a^{8}+\frac{2}{5}a^{4}+\frac{1}{5}$, $\frac{1}{10}a^{17}-\frac{3}{10}a^{13}+\frac{2}{5}a^{9}+\frac{1}{5}a^{5}+\frac{1}{10}a$, $\frac{1}{20}a^{18}-\frac{3}{20}a^{14}-\frac{3}{10}a^{10}-\frac{2}{5}a^{6}+\frac{1}{20}a^{2}$, $\frac{1}{40}a^{19}-\frac{3}{40}a^{15}+\frac{7}{20}a^{11}+\frac{3}{10}a^{7}+\frac{1}{40}a^{3}$, $\frac{1}{80}a^{20}+\frac{1}{16}a^{16}+\frac{3}{8}a^{12}-\frac{9}{20}a^{8}+\frac{17}{80}a^{4}-\frac{2}{5}$, $\frac{1}{160}a^{21}+\frac{1}{32}a^{17}-\frac{5}{16}a^{13}-\frac{9}{40}a^{9}+\frac{17}{160}a^{5}+\frac{3}{10}a$, $\frac{1}{320}a^{22}+\frac{1}{64}a^{18}-\frac{5}{32}a^{14}-\frac{9}{80}a^{10}+\frac{17}{320}a^{6}-\frac{7}{20}a^{2}$, $\frac{1}{640}a^{23}+\frac{1}{128}a^{19}+\frac{27}{64}a^{15}-\frac{9}{160}a^{11}-\frac{303}{640}a^{7}+\frac{13}{40}a^{3}$, $\frac{1}{24320}a^{24}-\frac{59}{24320}a^{20}+\frac{679}{12160}a^{16}+\frac{43}{1216}a^{12}-\frac{10287}{24320}a^{8}-\frac{279}{1520}a^{4}+\frac{16}{95}$, $\frac{1}{48640}a^{25}-\frac{59}{48640}a^{21}+\frac{679}{24320}a^{17}-\frac{1173}{2432}a^{13}+\frac{14033}{48640}a^{9}-\frac{279}{3040}a^{5}-\frac{79}{190}a$, $\frac{1}{97280}a^{26}-\frac{59}{97280}a^{22}+\frac{679}{48640}a^{18}+\frac{1259}{4864}a^{14}+\frac{14033}{97280}a^{10}+\frac{2761}{6080}a^{6}-\frac{79}{380}a^{2}$, $\frac{1}{194560}a^{27}-\frac{59}{194560}a^{23}+\frac{679}{97280}a^{19}+\frac{1259}{9728}a^{15}+\frac{14033}{194560}a^{11}-\frac{3319}{12160}a^{7}+\frac{301}{760}a^{3}$, $\frac{1}{13619200}a^{28}+\frac{7}{389120}a^{24}+\frac{40351}{6809600}a^{20}+\frac{133823}{3404800}a^{16}+\frac{3388433}{13619200}a^{12}-\frac{80093}{212800}a^{8}+\frac{43}{380}a^{4}+\frac{16}{175}$, $\frac{1}{27238400}a^{29}+\frac{7}{778240}a^{25}+\frac{40351}{13619200}a^{21}+\frac{133823}{6809600}a^{17}-\frac{10230767}{27238400}a^{13}-\frac{80093}{425600}a^{9}+\frac{43}{760}a^{5}+\frac{8}{175}a$, $\frac{1}{54476800}a^{30}+\frac{7}{1556480}a^{26}+\frac{40351}{27238400}a^{22}+\frac{133823}{13619200}a^{18}-\frac{10230767}{54476800}a^{14}-\frac{80093}{851200}a^{10}-\frac{717}{1520}a^{6}+\frac{4}{175}a^{2}$, $\frac{1}{108953600}a^{31}+\frac{7}{3112960}a^{27}+\frac{40351}{54476800}a^{23}+\frac{133823}{27238400}a^{19}+\frac{44246033}{108953600}a^{15}+\frac{771107}{1702400}a^{11}-\frac{717}{3040}a^{7}-\frac{171}{350}a^{3}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $5$

Class group and class number

$C_{3}\times C_{186}$, which has order $558$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Relative class number: $558$ (assuming GRH)

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $15$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -\frac{3351}{27238400} a^{29} + \frac{623}{778240} a^{25} - \frac{53201}{13619200} a^{21} + \frac{98687}{6809600} a^{17} - \frac{1407303}{27238400} a^{13} + \frac{379807}{1702400} a^{9} - \frac{2339}{3040} a^{5} + \frac{3818}{3325} a \)  (order $8$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{431}{27238400}a^{29}-\frac{279}{778240}a^{25}+\frac{25121}{13619200}a^{21}-\frac{43167}{6809600}a^{17}+\frac{646943}{27238400}a^{13}-\frac{35531}{851200}a^{9}+\frac{253}{1520}a^{5}-\frac{6281}{6650}a$, $\frac{543}{13619200}a^{31}-\frac{123}{389120}a^{27}+\frac{11163}{6809600}a^{23}-\frac{23721}{3404800}a^{19}+\frac{297279}{13619200}a^{15}-\frac{312479}{3404800}a^{11}+\frac{5777}{12160}a^{7}-\frac{18209}{26600}a^{3}$, $\frac{723}{10895360}a^{30}-\frac{3351}{27238400}a^{29}-\frac{743}{1556480}a^{26}+\frac{623}{778240}a^{25}+\frac{10989}{5447680}a^{22}-\frac{53201}{13619200}a^{21}-\frac{22707}{2723840}a^{18}+\frac{98687}{6809600}a^{17}+\frac{440067}{10895360}a^{14}-\frac{1407303}{27238400}a^{13}-\frac{2833}{21280}a^{10}+\frac{379807}{1702400}a^{9}+\frac{2929}{6080}a^{6}-\frac{2339}{3040}a^{5}-\frac{2311}{2660}a^{2}+\frac{3818}{3325}a-1$, $\frac{1}{77824}a^{28}+\frac{73}{389120}a^{24}-\frac{33}{38912}a^{20}-\frac{453}{97280}a^{16}+\frac{7253}{389120}a^{12}+\frac{237}{6080}a^{8}-\frac{59}{304}a^{4}-\frac{12}{95}$, $\frac{3443}{27238400}a^{31}+\frac{559}{2723840}a^{30}-\frac{4943}{13619200}a^{29}-\frac{863}{778240}a^{27}-\frac{491}{389120}a^{26}+\frac{9}{4096}a^{25}+\frac{60463}{13619200}a^{23}+\frac{8397}{1361920}a^{22}-\frac{68113}{6809600}a^{21}-\frac{131821}{6809600}a^{19}-\frac{15691}{680960}a^{18}+\frac{133871}{3404800}a^{17}+\frac{1978579}{27238400}a^{15}+\frac{59251}{544768}a^{14}-\frac{2183999}{13619200}a^{13}-\frac{2180579}{6809600}a^{11}-\frac{127317}{340480}a^{10}+\frac{142729}{212800}a^{9}+\frac{181}{160}a^{7}+\frac{8589}{6080}a^{6}-\frac{7101}{3040}a^{5}-\frac{68367}{26600}a^{3}-\frac{5647}{2660}a^{2}+\frac{13598}{3325}a$, $\frac{321}{3404800}a^{31}-\frac{1}{28672}a^{30}-\frac{39}{194560}a^{28}-\frac{61}{97280}a^{27}+\frac{13}{20480}a^{26}+\frac{221}{194560}a^{24}+\frac{3441}{1702400}a^{23}-\frac{45}{14336}a^{22}-\frac{77}{19456}a^{20}-\frac{7347}{851200}a^{19}+\frac{87}{7168}a^{18}+\frac{1071}{48640}a^{16}+\frac{138433}{3404800}a^{15}-\frac{5861}{143360}a^{14}-\frac{15959}{194560}a^{12}-\frac{111043}{851200}a^{11}+\frac{6633}{35840}a^{10}+\frac{659}{2432}a^{8}+\frac{1211}{3040}a^{7}-\frac{33}{40}a^{6}-\frac{1649}{1520}a^{4}-\frac{8237}{26600}a^{3}+\frac{51}{28}a^{2}+\frac{42}{19}$, $\frac{599}{108953600}a^{31}+\frac{159}{3404800}a^{29}+\frac{3}{194560}a^{28}+\frac{113}{3112960}a^{27}-\frac{3}{5120}a^{25}-\frac{169}{194560}a^{24}-\frac{47231}{54476800}a^{23}+\frac{2797}{851200}a^{21}+\frac{117}{19456}a^{20}+\frac{99857}{27238400}a^{19}-\frac{2207}{212800}a^{17}-\frac{179}{9728}a^{16}-\frac{505593}{108953600}a^{15}+\frac{144167}{3404800}a^{13}+\frac{14931}{194560}a^{12}+\frac{94887}{6809600}a^{11}-\frac{429899}{1702400}a^{9}-\frac{9529}{24320}a^{8}-\frac{19}{128}a^{7}+\frac{2987}{3040}a^{5}+\frac{377}{380}a^{4}+\frac{6711}{26600}a^{3}-\frac{5701}{3325}a-\frac{174}{95}$, $\frac{6367}{108953600}a^{31}+\frac{43}{851200}a^{30}+\frac{67}{425600}a^{28}-\frac{1511}{3112960}a^{27}-\frac{3}{6080}a^{26}-\frac{21}{12160}a^{24}+\frac{103297}{54476800}a^{23}+\frac{1511}{851200}a^{22}+\frac{39}{5600}a^{20}-\frac{224159}{27238400}a^{19}-\frac{3457}{425600}a^{18}-\frac{383}{13300}a^{16}+\frac{3490511}{108953600}a^{15}+\frac{1061}{44800}a^{14}+\frac{50571}{425600}a^{12}-\frac{211571}{1702400}a^{11}-\frac{98251}{851200}a^{10}-\frac{112047}{212800}a^{8}+\frac{1219}{3040}a^{7}+\frac{1947}{6080}a^{6}+\frac{1381}{760}a^{4}-\frac{10851}{13300}a^{3}-\frac{10147}{13300}a^{2}-\frac{16059}{3325}$, $\frac{319}{54476800}a^{30}-\frac{103}{851200}a^{28}-\frac{967}{1556480}a^{26}-\frac{7}{24320}a^{24}+\frac{88289}{27238400}a^{22}+\frac{521}{212800}a^{20}-\frac{143743}{13619200}a^{18}-\frac{59}{13300}a^{16}+\frac{157173}{2867200}a^{14}+\frac{24561}{851200}a^{12}-\frac{173897}{851200}a^{10}-\frac{60577}{425600}a^{8}+\frac{5237}{6080}a^{6}+\frac{577}{760}a^{4}-\frac{31649}{13300}a^{2}-\frac{13372}{3325}$, $\frac{6367}{108953600}a^{31}+\frac{543}{2867200}a^{30}-\frac{3351}{13619200}a^{28}-\frac{1511}{3112960}a^{27}-\frac{1989}{1556480}a^{26}+\frac{623}{389120}a^{24}+\frac{103297}{54476800}a^{23}+\frac{161347}{27238400}a^{22}-\frac{53201}{6809600}a^{20}-\frac{224159}{27238400}a^{19}-\frac{310909}{13619200}a^{18}+\frac{98687}{3404800}a^{16}+\frac{3490511}{108953600}a^{15}+\frac{5014941}{54476800}a^{14}-\frac{1407303}{13619200}a^{12}-\frac{211571}{1702400}a^{11}-\frac{606447}{1702400}a^{10}+\frac{379807}{851200}a^{8}+\frac{1219}{3040}a^{7}+\frac{7607}{6080}a^{6}-\frac{2339}{1520}a^{4}-\frac{10851}{13300}a^{3}-\frac{26827}{13300}a^{2}+\frac{10961}{3325}$, $\frac{6911}{108953600}a^{31}-\frac{887}{6809600}a^{29}-\frac{519}{3112960}a^{27}+\frac{219}{194560}a^{25}+\frac{21601}{54476800}a^{23}-\frac{17207}{3404800}a^{21}-\frac{83327}{27238400}a^{19}+\frac{37549}{1702400}a^{17}+\frac{1414383}{108953600}a^{15}-\frac{458551}{6809600}a^{13}-\frac{52743}{1702400}a^{11}+\frac{508981}{1702400}a^{9}+\frac{621}{12160}a^{7}-\frac{1931}{1520}a^{5}+\frac{8539}{26600}a^{3}+\frac{7089}{3325}a$, $\frac{13753}{108953600}a^{31}+\frac{2329}{10895360}a^{30}-\frac{349}{1089536}a^{29}-\frac{2437}{6809600}a^{28}-\frac{2961}{3112960}a^{27}-\frac{2117}{1556480}a^{26}+\frac{1773}{778240}a^{25}+\frac{557}{194560}a^{24}+\frac{192823}{54476800}a^{23}+\frac{5939}{1089536}a^{22}-\frac{24079}{2723840}a^{21}-\frac{37187}{3404800}a^{20}-\frac{421961}{27238400}a^{19}-\frac{57457}{2723840}a^{18}+\frac{46353}{1361920}a^{17}+\frac{86509}{1702400}a^{16}+\frac{5897929}{108953600}a^{15}+\frac{937449}{10895360}a^{14}-\frac{785377}{5447680}a^{13}-\frac{1367701}{6809600}a^{12}-\frac{726513}{3404800}a^{11}-\frac{257937}{680960}a^{10}+\frac{49047}{85120}a^{9}+\frac{339419}{425600}a^{8}+\frac{9639}{12160}a^{7}+\frac{865}{608}a^{6}-\frac{6817}{3040}a^{5}-\frac{4411}{1520}a^{4}-\frac{12519}{13300}a^{3}-\frac{2677}{1330}a^{2}+\frac{5083}{1330}a+\frac{13434}{3325}$, $\frac{503}{5447680}a^{31}+\frac{1901}{7782400}a^{30}-\frac{543}{2723840}a^{29}-\frac{3603}{6809600}a^{28}-\frac{239}{778240}a^{27}-\frac{3299}{1556480}a^{26}+\frac{79}{77824}a^{25}+\frac{899}{194560}a^{24}+\frac{607}{544768}a^{23}+\frac{37331}{3891200}a^{22}-\frac{1233}{272384}a^{21}-\frac{70673}{3404800}a^{20}-\frac{733}{272384}a^{19}-\frac{79117}{1945600}a^{18}+\frac{2535}{136192}a^{17}+\frac{149031}{1702400}a^{16}+\frac{1515}{1089536}a^{15}+\frac{1307453}{7782400}a^{14}-\frac{166127}{2723840}a^{13}-\frac{137521}{358400}a^{12}+\frac{2913}{272384}a^{11}-\frac{9661}{15200}a^{10}+\frac{65943}{340480}a^{9}+\frac{1298187}{851200}a^{8}-\frac{651}{12160}a^{7}+\frac{2739}{1216}a^{6}-\frac{89}{160}a^{5}-\frac{8383}{1520}a^{4}+\frac{569}{665}a^{3}-\frac{2019}{475}a^{2}-\frac{278}{665}a+\frac{36111}{3325}$, $\frac{647}{3891200}a^{31}-\frac{1893}{10895360}a^{30}-\frac{2131}{5447680}a^{29}+\frac{319}{680960}a^{28}-\frac{1109}{778240}a^{27}+\frac{2209}{1556480}a^{26}+\frac{571}{155648}a^{25}-\frac{21}{5120}a^{24}+\frac{11827}{1945600}a^{23}-\frac{39699}{5447680}a^{22}-\frac{39629}{2723840}a^{21}+\frac{6431}{340480}a^{20}-\frac{25609}{972800}a^{19}+\frac{73117}{2723840}a^{18}+\frac{84051}{1361920}a^{17}-\frac{2353}{34048}a^{16}+\frac{367591}{3891200}a^{15}-\frac{1190389}{10895360}a^{14}-\frac{1345411}{5447680}a^{13}+\frac{205439}{680960}a^{12}-\frac{400791}{972800}a^{11}+\frac{58001}{136192}a^{10}+\frac{87133}{85120}a^{9}-\frac{42025}{34048}a^{8}+\frac{19533}{12160}a^{7}-\frac{2669}{1520}a^{6}-\frac{65}{19}a^{5}+\frac{6381}{1520}a^{4}-\frac{1546}{475}a^{3}+\frac{10841}{2660}a^{2}+\frac{4717}{665}a-\frac{1249}{133}$, $\frac{4329}{108953600}a^{31}-\frac{53}{7782400}a^{30}+\frac{183}{1361920}a^{29}+\frac{483}{1945600}a^{28}-\frac{1633}{3112960}a^{27}+\frac{123}{1556480}a^{26}-\frac{203}{194560}a^{25}-\frac{717}{389120}a^{24}+\frac{130839}{54476800}a^{23}+\frac{1637}{3891200}a^{22}+\frac{541}{136192}a^{21}+\frac{6493}{972800}a^{20}-\frac{276873}{27238400}a^{19}-\frac{13019}{1945600}a^{18}-\frac{5071}{340480}a^{17}-\frac{17411}{486400}a^{16}+\frac{5656697}{108953600}a^{15}+\frac{160251}{7782400}a^{14}+\frac{21627}{272384}a^{13}+\frac{282899}{1945600}a^{12}-\frac{165671}{851200}a^{11}-\frac{19557}{243200}a^{10}-\frac{34807}{85120}a^{9}-\frac{2283}{3800}a^{8}+\frac{2551}{6080}a^{7}+\frac{373}{1216}a^{6}+\frac{699}{608}a^{5}+\frac{1973}{760}a^{4}-\frac{15917}{13300}a^{3}-\frac{1847}{1900}a^{2}-\frac{2529}{1330}a-\frac{3113}{475}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 70769362065553.12 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{16}\cdot 70769362065553.12 \cdot 558}{8\cdot\sqrt{11242761639679742219392447654740052674625150753177600000000}}\cr\approx \mathstrut & 0.274682432590373 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^32 - 11*x^28 + 62*x^24 - 260*x^20 + 1041*x^16 - 4160*x^12 + 15872*x^8 - 45056*x^4 + 65536)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^32 - 11*x^28 + 62*x^24 - 260*x^20 + 1041*x^16 - 4160*x^12 + 15872*x^8 - 45056*x^4 + 65536, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^32 - 11*x^28 + 62*x^24 - 260*x^20 + 1041*x^16 - 4160*x^12 + 15872*x^8 - 45056*x^4 + 65536);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^32 - 11*x^28 + 62*x^24 - 260*x^20 + 1041*x^16 - 4160*x^12 + 15872*x^8 - 45056*x^4 + 65536);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$D_4^2:C_2^3$ (as 32T12882):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 512
The 80 conjugacy class representatives for $D_4^2:C_2^3$
Character table for $D_4^2:C_2^3$

Intermediate fields

\(\Q(\sqrt{-2}) \), \(\Q(\sqrt{29}) \), \(\Q(\sqrt{-29}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-58}) \), \(\Q(\sqrt{58}) \), \(\Q(\sqrt{-1}) \), 4.4.269120.1, 4.0.67280.1, 4.4.4205.1, 4.0.269120.1, \(\Q(i, \sqrt{58})\), \(\Q(\sqrt{-2}, \sqrt{29})\), \(\Q(\sqrt{2}, \sqrt{-29})\), \(\Q(\sqrt{-2}, \sqrt{-29})\), \(\Q(\sqrt{2}, \sqrt{29})\), \(\Q(\zeta_{8})\), \(\Q(i, \sqrt{29})\), 8.0.4968649025.1, 8.8.20351586406400.1, 8.0.20351586406400.1, 8.8.1271974150400.1, 8.0.46352367616.1, 8.0.1158809190400.13, 8.0.72425574400.8, 8.8.72425574400.1, 8.0.1158809190400.20, 8.0.1158809190400.9, 8.0.4526598400.4, 16.0.1342838739755503452160000.1, 16.0.414187069257165265960960000.2, 16.0.106031889729834308086005760000.1, 16.0.414187069257165265960960000.1, 16.16.106031889729834308086005760000.1, 16.0.1617918239285801820160000.1, 16.0.106031889729834308086005760000.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 32 siblings: data not computed
Minimal sibling: not computed

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.8.0.1}{8} }^{4}$ R ${\href{/padicField/7.4.0.1}{4} }^{4}{,}\,{\href{/padicField/7.2.0.1}{2} }^{8}$ ${\href{/padicField/11.4.0.1}{4} }^{4}{,}\,{\href{/padicField/11.2.0.1}{2} }^{8}$ ${\href{/padicField/13.4.0.1}{4} }^{4}{,}\,{\href{/padicField/13.2.0.1}{2} }^{8}$ ${\href{/padicField/17.4.0.1}{4} }^{8}$ ${\href{/padicField/19.4.0.1}{4} }^{4}{,}\,{\href{/padicField/19.2.0.1}{2} }^{8}$ ${\href{/padicField/23.4.0.1}{4} }^{4}{,}\,{\href{/padicField/23.2.0.1}{2} }^{8}$ R ${\href{/padicField/31.4.0.1}{4} }^{8}$ ${\href{/padicField/37.8.0.1}{8} }^{4}$ ${\href{/padicField/41.4.0.1}{4} }^{4}{,}\,{\href{/padicField/41.2.0.1}{2} }^{8}$ ${\href{/padicField/43.4.0.1}{4} }^{8}$ ${\href{/padicField/47.8.0.1}{8} }^{4}$ ${\href{/padicField/53.4.0.1}{4} }^{4}{,}\,{\href{/padicField/53.2.0.1}{2} }^{8}$ ${\href{/padicField/59.4.0.1}{4} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display Deg $16$$4$$4$$32$
Deg $16$$4$$4$$32$
\(5\) Copy content Toggle raw display 5.2.0.1$x^{2} + 4 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
5.2.0.1$x^{2} + 4 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
5.2.0.1$x^{2} + 4 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
5.2.0.1$x^{2} + 4 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
5.2.0.1$x^{2} + 4 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
5.2.0.1$x^{2} + 4 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
5.2.0.1$x^{2} + 4 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
5.2.0.1$x^{2} + 4 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
5.4.2.1$x^{4} + 48 x^{3} + 670 x^{2} + 2256 x + 1449$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 48 x^{3} + 670 x^{2} + 2256 x + 1449$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 48 x^{3} + 670 x^{2} + 2256 x + 1449$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 48 x^{3} + 670 x^{2} + 2256 x + 1449$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
\(29\) Copy content Toggle raw display 29.4.2.1$x^{4} + 1440 x^{3} + 535166 x^{2} + 12071520 x + 1504089$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
29.4.2.1$x^{4} + 1440 x^{3} + 535166 x^{2} + 12071520 x + 1504089$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
29.4.2.1$x^{4} + 1440 x^{3} + 535166 x^{2} + 12071520 x + 1504089$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
29.4.2.1$x^{4} + 1440 x^{3} + 535166 x^{2} + 12071520 x + 1504089$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
29.4.2.1$x^{4} + 1440 x^{3} + 535166 x^{2} + 12071520 x + 1504089$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
29.4.2.1$x^{4} + 1440 x^{3} + 535166 x^{2} + 12071520 x + 1504089$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
29.4.2.1$x^{4} + 1440 x^{3} + 535166 x^{2} + 12071520 x + 1504089$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
29.4.2.1$x^{4} + 1440 x^{3} + 535166 x^{2} + 12071520 x + 1504089$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
\(281\) Copy content Toggle raw display $\Q_{281}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{281}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{281}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{281}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{281}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{281}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{281}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{281}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{281}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{281}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{281}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{281}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{281}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{281}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{281}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{281}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$