Normalized defining polynomial
\( x^{32} - 4 x^{31} - 16 x^{30} + 68 x^{29} + 238 x^{28} - 892 x^{27} - 2226 x^{26} + 7118 x^{25} + \cdots + 256 \)
Invariants
Degree: | $32$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 16]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(1119917091733566341117149537716450109685760000000000000000\) \(\medspace = 2^{48}\cdot 3^{16}\cdot 5^{16}\cdot 29^{8}\cdot 1049^{4}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(60.64\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{3/2}3^{1/2}5^{1/2}29^{1/2}1049^{1/2}\approx 1910.6334028274498$ | ||
Ramified primes: | \(2\), \(3\), \(5\), \(29\), \(1049\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Aut(K/\Q) }$: | $8$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is a CM field. | |||
Reflex fields: | unavailable$^{32768}$ |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{2}a^{18}-\frac{1}{2}a^{10}-\frac{1}{2}a^{6}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{19}-\frac{1}{2}a^{11}-\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}$, $\frac{1}{8}a^{20}-\frac{1}{4}a^{18}-\frac{1}{2}a^{17}+\frac{1}{4}a^{16}-\frac{1}{2}a^{15}+\frac{1}{4}a^{14}-\frac{1}{4}a^{13}+\frac{1}{8}a^{12}-\frac{1}{2}a^{10}-\frac{1}{4}a^{9}+\frac{3}{8}a^{8}-\frac{1}{4}a^{7}+\frac{3}{8}a^{6}+\frac{1}{4}a^{5}-\frac{1}{8}a^{4}-\frac{1}{2}a^{3}-\frac{1}{4}a^{2}-\frac{1}{2}$, $\frac{1}{8}a^{21}-\frac{1}{4}a^{19}+\frac{1}{4}a^{17}-\frac{1}{2}a^{16}+\frac{1}{4}a^{15}-\frac{1}{4}a^{14}+\frac{1}{8}a^{13}-\frac{1}{2}a^{11}+\frac{1}{4}a^{10}+\frac{3}{8}a^{9}-\frac{1}{4}a^{8}+\frac{3}{8}a^{7}-\frac{1}{4}a^{6}-\frac{1}{8}a^{5}-\frac{1}{4}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{16}a^{22}-\frac{1}{4}a^{19}-\frac{1}{8}a^{18}-\frac{1}{4}a^{17}+\frac{3}{8}a^{16}+\frac{3}{8}a^{15}+\frac{5}{16}a^{14}-\frac{1}{4}a^{13}+\frac{3}{8}a^{12}+\frac{3}{8}a^{11}+\frac{3}{16}a^{10}+\frac{1}{8}a^{9}+\frac{1}{16}a^{8}-\frac{1}{8}a^{7}-\frac{3}{16}a^{6}-\frac{1}{2}a^{5}-\frac{1}{4}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{16}a^{23}-\frac{1}{8}a^{19}-\frac{1}{4}a^{18}+\frac{3}{8}a^{17}-\frac{1}{8}a^{16}+\frac{5}{16}a^{15}+\frac{1}{4}a^{14}-\frac{1}{8}a^{13}-\frac{3}{8}a^{12}+\frac{3}{16}a^{11}-\frac{3}{8}a^{10}-\frac{7}{16}a^{9}-\frac{3}{8}a^{8}+\frac{5}{16}a^{7}-\frac{1}{4}a^{6}+\frac{1}{4}a^{5}-\frac{1}{4}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{64}a^{24}-\frac{1}{16}a^{21}+\frac{1}{32}a^{20}-\frac{1}{16}a^{19}+\frac{7}{32}a^{18}-\frac{13}{32}a^{17}+\frac{13}{64}a^{16}-\frac{1}{16}a^{15}-\frac{1}{32}a^{14}+\frac{7}{32}a^{13}-\frac{9}{64}a^{12}-\frac{7}{32}a^{11}+\frac{1}{64}a^{10}-\frac{5}{32}a^{9}-\frac{23}{64}a^{8}-\frac{3}{8}a^{6}-\frac{1}{4}a^{5}+\frac{5}{16}a^{4}+\frac{1}{4}a^{3}-\frac{1}{4}a^{2}-\frac{1}{4}$, $\frac{1}{64}a^{25}+\frac{1}{32}a^{21}-\frac{1}{16}a^{20}-\frac{1}{32}a^{19}-\frac{1}{32}a^{18}-\frac{3}{64}a^{17}+\frac{5}{16}a^{16}+\frac{11}{32}a^{15}-\frac{15}{32}a^{14}-\frac{25}{64}a^{13}+\frac{5}{32}a^{12}+\frac{25}{64}a^{11}-\frac{15}{32}a^{10}-\frac{15}{64}a^{9}+\frac{1}{16}a^{8}-\frac{1}{2}a^{7}+\frac{1}{16}a^{6}-\frac{3}{16}a^{5}-\frac{1}{2}a^{4}+\frac{1}{4}a^{3}-\frac{1}{4}a-\frac{1}{2}$, $\frac{1}{128}a^{26}-\frac{1}{32}a^{23}+\frac{1}{64}a^{22}-\frac{1}{32}a^{21}-\frac{1}{64}a^{20}-\frac{13}{64}a^{19}-\frac{19}{128}a^{18}-\frac{1}{32}a^{17}-\frac{17}{64}a^{16}-\frac{25}{64}a^{15}-\frac{41}{128}a^{14}+\frac{9}{64}a^{13}-\frac{15}{128}a^{12}+\frac{27}{64}a^{11}-\frac{23}{128}a^{10}+\frac{1}{4}a^{9}+\frac{7}{16}a^{8}-\frac{3}{8}a^{7}+\frac{9}{32}a^{6}-\frac{1}{8}a^{5}-\frac{1}{2}a^{3}-\frac{3}{8}a^{2}-\frac{1}{2}$, $\frac{1}{128}a^{27}+\frac{1}{64}a^{23}-\frac{1}{32}a^{22}-\frac{1}{64}a^{21}-\frac{1}{64}a^{20}-\frac{3}{128}a^{19}+\frac{5}{32}a^{18}-\frac{21}{64}a^{17}-\frac{15}{64}a^{16}+\frac{39}{128}a^{15}+\frac{5}{64}a^{14}+\frac{25}{128}a^{13}+\frac{17}{64}a^{12}+\frac{49}{128}a^{11}+\frac{1}{32}a^{10}+\frac{1}{4}a^{9}+\frac{1}{32}a^{8}-\frac{3}{32}a^{7}+\frac{1}{4}a^{6}+\frac{1}{8}a^{5}-\frac{1}{8}a^{3}-\frac{1}{4}a^{2}$, $\frac{1}{512}a^{28}-\frac{1}{256}a^{26}-\frac{1}{128}a^{25}-\frac{1}{256}a^{24}+\frac{1}{128}a^{23}+\frac{5}{256}a^{22}-\frac{1}{256}a^{21}-\frac{23}{512}a^{20}+\frac{11}{128}a^{18}+\frac{63}{256}a^{17}-\frac{185}{512}a^{16}-\frac{77}{256}a^{15}+\frac{155}{512}a^{14}+\frac{13}{256}a^{13}+\frac{11}{512}a^{12}+\frac{51}{128}a^{11}-\frac{119}{256}a^{10}+\frac{27}{64}a^{9}+\frac{1}{16}a^{8}+\frac{3}{32}a^{7}-\frac{3}{64}a^{6}+\frac{5}{16}a^{5}+\frac{1}{8}a^{4}-\frac{1}{8}a^{3}+\frac{3}{16}a^{2}+\frac{1}{8}$, $\frac{1}{5632}a^{29}-\frac{1}{2816}a^{28}-\frac{7}{2816}a^{27}-\frac{3}{1408}a^{26}-\frac{5}{2816}a^{25}+\frac{1}{352}a^{24}-\frac{51}{2816}a^{23}-\frac{79}{2816}a^{22}+\frac{117}{5632}a^{21}-\frac{137}{2816}a^{20}+\frac{97}{704}a^{19}-\frac{331}{2816}a^{18}-\frac{2221}{5632}a^{17}-\frac{13}{88}a^{16}-\frac{877}{5632}a^{15}-\frac{303}{704}a^{14}-\frac{1197}{5632}a^{13}+\frac{53}{2816}a^{12}+\frac{563}{2816}a^{11}+\frac{53}{176}a^{10}+\frac{85}{352}a^{9}+\frac{265}{704}a^{8}-\frac{221}{704}a^{7}-\frac{15}{88}a^{6}+\frac{13}{88}a^{5}+\frac{3}{16}a^{4}+\frac{1}{176}a^{3}-\frac{1}{22}a^{2}-\frac{27}{88}a+\frac{4}{11}$, $\frac{1}{43\!\cdots\!64}a^{30}-\frac{68\!\cdots\!15}{10\!\cdots\!16}a^{29}+\frac{52\!\cdots\!27}{54\!\cdots\!08}a^{28}+\frac{24\!\cdots\!45}{10\!\cdots\!16}a^{27}-\frac{16\!\cdots\!55}{21\!\cdots\!32}a^{26}-\frac{34\!\cdots\!51}{10\!\cdots\!16}a^{25}-\frac{17\!\cdots\!57}{21\!\cdots\!32}a^{24}+\frac{36\!\cdots\!19}{21\!\cdots\!32}a^{23}+\frac{91\!\cdots\!55}{39\!\cdots\!24}a^{22}+\frac{11\!\cdots\!49}{27\!\cdots\!04}a^{21}-\frac{26\!\cdots\!53}{21\!\cdots\!32}a^{20}-\frac{18\!\cdots\!21}{21\!\cdots\!32}a^{19}-\frac{55\!\cdots\!49}{43\!\cdots\!64}a^{18}-\frac{67\!\cdots\!99}{31\!\cdots\!76}a^{17}-\frac{21\!\cdots\!99}{43\!\cdots\!64}a^{16}-\frac{69\!\cdots\!19}{21\!\cdots\!32}a^{15}-\frac{19\!\cdots\!51}{43\!\cdots\!64}a^{14}+\frac{17\!\cdots\!23}{10\!\cdots\!16}a^{13}+\frac{10\!\cdots\!85}{27\!\cdots\!04}a^{12}+\frac{18\!\cdots\!27}{78\!\cdots\!44}a^{11}-\frac{10\!\cdots\!47}{10\!\cdots\!16}a^{10}+\frac{12\!\cdots\!15}{27\!\cdots\!04}a^{9}-\frac{26\!\cdots\!25}{54\!\cdots\!08}a^{8}+\frac{47\!\cdots\!21}{13\!\cdots\!52}a^{7}+\frac{51\!\cdots\!53}{27\!\cdots\!04}a^{6}-\frac{34\!\cdots\!91}{98\!\cdots\!68}a^{5}+\frac{63\!\cdots\!93}{13\!\cdots\!52}a^{4}+\frac{80\!\cdots\!73}{24\!\cdots\!92}a^{3}-\frac{20\!\cdots\!81}{85\!\cdots\!22}a^{2}-\frac{14\!\cdots\!59}{85\!\cdots\!22}a+\frac{61\!\cdots\!31}{34\!\cdots\!88}$, $\frac{1}{27\!\cdots\!44}a^{31}-\frac{16\!\cdots\!07}{27\!\cdots\!44}a^{30}-\frac{21\!\cdots\!35}{69\!\cdots\!36}a^{29}-\frac{36\!\cdots\!55}{13\!\cdots\!72}a^{28}+\frac{28\!\cdots\!11}{13\!\cdots\!72}a^{27}+\frac{29\!\cdots\!51}{19\!\cdots\!96}a^{26}-\frac{98\!\cdots\!67}{13\!\cdots\!72}a^{25}-\frac{22\!\cdots\!51}{34\!\cdots\!68}a^{24}+\frac{15\!\cdots\!91}{27\!\cdots\!44}a^{23}+\frac{47\!\cdots\!81}{35\!\cdots\!72}a^{22}+\frac{51\!\cdots\!25}{13\!\cdots\!72}a^{21}+\frac{82\!\cdots\!89}{13\!\cdots\!72}a^{20}-\frac{54\!\cdots\!71}{27\!\cdots\!44}a^{19}-\frac{27\!\cdots\!55}{27\!\cdots\!44}a^{18}-\frac{69\!\cdots\!65}{27\!\cdots\!44}a^{17}-\frac{52\!\cdots\!61}{39\!\cdots\!92}a^{16}-\frac{29\!\cdots\!41}{27\!\cdots\!44}a^{15}+\frac{11\!\cdots\!39}{27\!\cdots\!44}a^{14}-\frac{75\!\cdots\!27}{49\!\cdots\!24}a^{13}-\frac{23\!\cdots\!35}{13\!\cdots\!72}a^{12}+\frac{25\!\cdots\!79}{69\!\cdots\!36}a^{11}+\frac{11\!\cdots\!13}{34\!\cdots\!68}a^{10}-\frac{24\!\cdots\!95}{34\!\cdots\!68}a^{9}+\frac{50\!\cdots\!17}{34\!\cdots\!68}a^{8}-\frac{82\!\cdots\!35}{24\!\cdots\!12}a^{7}-\frac{32\!\cdots\!81}{86\!\cdots\!92}a^{6}-\frac{16\!\cdots\!09}{86\!\cdots\!92}a^{5}+\frac{14\!\cdots\!59}{86\!\cdots\!92}a^{4}+\frac{21\!\cdots\!09}{10\!\cdots\!24}a^{3}-\frac{16\!\cdots\!47}{61\!\cdots\!28}a^{2}+\frac{22\!\cdots\!57}{21\!\cdots\!48}a+\frac{10\!\cdots\!85}{24\!\cdots\!71}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $2$ |
Class group and class number
$C_{528}$, which has order $528$ (assuming GRH)
Relative class number: $528$ (assuming GRH)
Unit group
Rank: | $15$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -\frac{145579329389213238956905503850021466604494203718899673745478605298177}{443117755956387510884733546733454077488812176506340990930958337554987584} a^{31} + \frac{586646157206852961343953312725175178574262423383110948500923634559823}{443117755956387510884733546733454077488812176506340990930958337554987584} a^{30} + \frac{577184033870002100215064640218964419821133748709760112746032235496987}{110779438989096877721183386683363519372203044126585247732739584388746896} a^{29} - \frac{113128000010256112814703683561469127354128945833480202092019018289385}{5035429044958948987326517576516523607827411096662965806033617472215768} a^{28} - \frac{17151836820445930670140561680012384026736765881031725405382653502930283}{221558877978193755442366773366727038744406088253170495465479168777493792} a^{27} + \frac{5939008558251303032543034110119256385069546919996536632336124296221443}{20141716179835795949306070306066094431309644386651863224134469888863072} a^{26} + \frac{159730152405382745903471745877310340441555596713929069277809598210539135}{221558877978193755442366773366727038744406088253170495465479168777493792} a^{25} - \frac{130355762161077760014537439428583100148747591198568032418553071710062215}{55389719494548438860591693341681759686101522063292623866369792194373448} a^{24} - \frac{2808306409552335946573259287802113905424732312233486417891998912176969547}{443117755956387510884733546733454077488812176506340990930958337554987584} a^{23} + \frac{7456770724894114751558408400948299915492675172333648122406938190516376359}{443117755956387510884733546733454077488812176506340990930958337554987584} a^{22} + \frac{7852338634246750069532979384717077346825006599922247845402771446600893533}{221558877978193755442366773366727038744406088253170495465479168777493792} a^{21} - \frac{522649884495176189474198959230269333184473445830433399984792313329403654}{6923714936818554857573961667710219960762690257911577983296224024296681} a^{20} - \frac{82318879640324688587994957435205267975027744555432562860239618854796652533}{443117755956387510884733546733454077488812176506340990930958337554987584} a^{19} + \frac{154358035211111136519408325024172117194601168977917026879875645942939004751}{443117755956387510884733546733454077488812176506340990930958337554987584} a^{18} + \frac{191585568568324819682186783619265320667407689546186448031872377983054764577}{443117755956387510884733546733454077488812176506340990930958337554987584} a^{17} - \frac{353909284199657152991660768932536155132163275082999255996626718360484970319}{443117755956387510884733546733454077488812176506340990930958337554987584} a^{16} - \frac{396177842823763191809483463700449435174510217824188779590258524009406331587}{443117755956387510884733546733454077488812176506340990930958337554987584} a^{15} + \frac{1946104702908384867032191954004996587142029843156670183328266229002153846987}{443117755956387510884733546733454077488812176506340990930958337554987584} a^{14} - \frac{1133543316497229249872727813042887361000279315589996306526245948361663490985}{110779438989096877721183386683363519372203044126585247732739584388746896} a^{13} + \frac{746457556048367231949689233544177649449331522243349862333568483608711078019}{55389719494548438860591693341681759686101522063292623866369792194373448} a^{12} - \frac{1350131847981051840558981951667278722160656152313881939589490331102240351101}{110779438989096877721183386683363519372203044126585247732739584388746896} a^{11} + \frac{228034796854724919734233742498446480240963558496654234230254235539100945095}{27694859747274219430295846670840879843050761031646311933184896097186724} a^{10} - \frac{386820245709461596191024470186548689274171629573580525546600412843691744815}{55389719494548438860591693341681759686101522063292623866369792194373448} a^{9} + \frac{375249951556728496779090198317388609088626670724505390318537984025782012709}{110779438989096877721183386683363519372203044126585247732739584388746896} a^{8} - \frac{7301099654207175455424536396181190922691437450697284369231374903491964435}{2517714522479474493663258788258261803913705548331482903016808736107884} a^{7} + \frac{5921330212803145955017110752533470513552513341707352631411186945228012244}{6923714936818554857573961667710219960762690257911577983296224024296681} a^{6} - \frac{11532197791046812523736846986195360869053432897191042577633517188095682041}{13847429873637109715147923335420439921525380515823155966592448048593362} a^{5} + \frac{690226699103100109810171604504300364670703334713315043632102145152303034}{6923714936818554857573961667710219960762690257911577983296224024296681} a^{4} - \frac{1183564499281722701969850619949260509472848726953721973040347138948952658}{6923714936818554857573961667710219960762690257911577983296224024296681} a^{3} - \frac{208527048042362950438142335019043878511473777914214018288941665018324847}{6923714936818554857573961667710219960762690257911577983296224024296681} a^{2} - \frac{82221734628065789590162547695308473861834627595047598649104500562299898}{6923714936818554857573961667710219960762690257911577983296224024296681} a - \frac{1201225922071773933715685967320792552355130467915186557879221500229763}{6923714936818554857573961667710219960762690257911577983296224024296681} \) (order $6$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{45\!\cdots\!65}{24\!\cdots\!68}a^{31}-\frac{20\!\cdots\!21}{27\!\cdots\!16}a^{30}-\frac{25\!\cdots\!51}{85\!\cdots\!88}a^{29}+\frac{17\!\cdots\!63}{13\!\cdots\!08}a^{28}+\frac{27\!\cdots\!33}{62\!\cdots\!64}a^{27}-\frac{22\!\cdots\!83}{13\!\cdots\!08}a^{26}-\frac{25\!\cdots\!71}{62\!\cdots\!64}a^{25}+\frac{18\!\cdots\!03}{13\!\cdots\!08}a^{24}+\frac{49\!\cdots\!93}{13\!\cdots\!08}a^{23}-\frac{25\!\cdots\!29}{27\!\cdots\!16}a^{22}-\frac{69\!\cdots\!59}{34\!\cdots\!52}a^{21}+\frac{13\!\cdots\!05}{31\!\cdots\!32}a^{20}+\frac{14\!\cdots\!61}{13\!\cdots\!08}a^{19}-\frac{53\!\cdots\!55}{27\!\cdots\!16}a^{18}-\frac{49\!\cdots\!61}{19\!\cdots\!44}a^{17}+\frac{12\!\cdots\!81}{27\!\cdots\!16}a^{16}+\frac{71\!\cdots\!99}{13\!\cdots\!08}a^{15}-\frac{67\!\cdots\!59}{27\!\cdots\!16}a^{14}+\frac{39\!\cdots\!93}{68\!\cdots\!04}a^{13}-\frac{10\!\cdots\!19}{13\!\cdots\!08}a^{12}+\frac{84\!\cdots\!31}{12\!\cdots\!84}a^{11}-\frac{16\!\cdots\!09}{34\!\cdots\!52}a^{10}+\frac{22\!\cdots\!29}{53\!\cdots\!18}a^{9}-\frac{69\!\cdots\!13}{34\!\cdots\!52}a^{8}+\frac{74\!\cdots\!83}{42\!\cdots\!44}a^{7}-\frac{44\!\cdots\!87}{85\!\cdots\!88}a^{6}+\frac{17\!\cdots\!04}{34\!\cdots\!67}a^{5}-\frac{57\!\cdots\!23}{85\!\cdots\!88}a^{4}+\frac{31\!\cdots\!69}{30\!\cdots\!96}a^{3}+\frac{78\!\cdots\!17}{42\!\cdots\!44}a^{2}+\frac{78\!\cdots\!63}{10\!\cdots\!36}a+\frac{77\!\cdots\!95}{10\!\cdots\!36}$, $\frac{38\!\cdots\!63}{17\!\cdots\!44}a^{31}-\frac{17\!\cdots\!03}{21\!\cdots\!68}a^{30}-\frac{33\!\cdots\!79}{87\!\cdots\!72}a^{29}+\frac{62\!\cdots\!73}{43\!\cdots\!36}a^{28}+\frac{49\!\cdots\!37}{87\!\cdots\!72}a^{27}-\frac{81\!\cdots\!69}{43\!\cdots\!36}a^{26}-\frac{48\!\cdots\!77}{87\!\cdots\!72}a^{25}+\frac{13\!\cdots\!21}{87\!\cdots\!72}a^{24}+\frac{84\!\cdots\!15}{17\!\cdots\!44}a^{23}-\frac{23\!\cdots\!63}{21\!\cdots\!68}a^{22}-\frac{12\!\cdots\!03}{43\!\cdots\!36}a^{21}+\frac{41\!\cdots\!69}{87\!\cdots\!72}a^{20}+\frac{25\!\cdots\!53}{17\!\cdots\!44}a^{19}-\frac{26\!\cdots\!45}{12\!\cdots\!96}a^{18}-\frac{70\!\cdots\!83}{17\!\cdots\!44}a^{17}+\frac{45\!\cdots\!11}{87\!\cdots\!72}a^{16}+\frac{15\!\cdots\!09}{17\!\cdots\!44}a^{15}-\frac{12\!\cdots\!93}{43\!\cdots\!36}a^{14}+\frac{45\!\cdots\!21}{79\!\cdots\!52}a^{13}-\frac{18\!\cdots\!33}{31\!\cdots\!24}a^{12}+\frac{76\!\cdots\!37}{21\!\cdots\!68}a^{11}-\frac{99\!\cdots\!37}{10\!\cdots\!84}a^{10}+\frac{30\!\cdots\!75}{19\!\cdots\!88}a^{9}-\frac{65\!\cdots\!55}{27\!\cdots\!96}a^{8}+\frac{24\!\cdots\!11}{54\!\cdots\!92}a^{7}+\frac{77\!\cdots\!75}{97\!\cdots\!32}a^{6}+\frac{48\!\cdots\!91}{54\!\cdots\!92}a^{5}+\frac{93\!\cdots\!37}{19\!\cdots\!64}a^{4}-\frac{52\!\cdots\!39}{27\!\cdots\!96}a^{3}-\frac{10\!\cdots\!83}{17\!\cdots\!31}a^{2}-\frac{48\!\cdots\!97}{68\!\cdots\!24}a-\frac{11\!\cdots\!49}{24\!\cdots\!33}$, $\frac{11\!\cdots\!93}{39\!\cdots\!92}a^{31}-\frac{31\!\cdots\!23}{27\!\cdots\!44}a^{30}-\frac{30\!\cdots\!59}{69\!\cdots\!36}a^{29}+\frac{26\!\cdots\!89}{13\!\cdots\!72}a^{28}+\frac{91\!\cdots\!61}{13\!\cdots\!72}a^{27}-\frac{32\!\cdots\!09}{12\!\cdots\!52}a^{26}-\frac{85\!\cdots\!85}{13\!\cdots\!72}a^{25}+\frac{14\!\cdots\!77}{69\!\cdots\!36}a^{24}+\frac{15\!\cdots\!37}{27\!\cdots\!44}a^{23}-\frac{36\!\cdots\!73}{25\!\cdots\!04}a^{22}-\frac{38\!\cdots\!59}{12\!\cdots\!52}a^{21}+\frac{90\!\cdots\!79}{13\!\cdots\!72}a^{20}+\frac{44\!\cdots\!47}{27\!\cdots\!44}a^{19}-\frac{83\!\cdots\!47}{27\!\cdots\!44}a^{18}-\frac{14\!\cdots\!17}{39\!\cdots\!92}a^{17}+\frac{19\!\cdots\!97}{27\!\cdots\!44}a^{16}+\frac{21\!\cdots\!33}{27\!\cdots\!44}a^{15}-\frac{95\!\cdots\!99}{25\!\cdots\!04}a^{14}+\frac{30\!\cdots\!69}{34\!\cdots\!68}a^{13}-\frac{16\!\cdots\!39}{13\!\cdots\!72}a^{12}+\frac{10\!\cdots\!91}{98\!\cdots\!48}a^{11}-\frac{25\!\cdots\!41}{34\!\cdots\!68}a^{10}+\frac{21\!\cdots\!93}{34\!\cdots\!68}a^{9}-\frac{10\!\cdots\!61}{34\!\cdots\!68}a^{8}+\frac{40\!\cdots\!67}{15\!\cdots\!44}a^{7}-\frac{68\!\cdots\!07}{86\!\cdots\!92}a^{6}+\frac{92\!\cdots\!49}{12\!\cdots\!56}a^{5}-\frac{86\!\cdots\!15}{86\!\cdots\!92}a^{4}+\frac{23\!\cdots\!91}{15\!\cdots\!32}a^{3}+\frac{11\!\cdots\!79}{43\!\cdots\!96}a^{2}+\frac{23\!\cdots\!37}{21\!\cdots\!48}a+\frac{11\!\cdots\!59}{10\!\cdots\!24}$, $\frac{19\!\cdots\!95}{27\!\cdots\!44}a^{31}-\frac{38\!\cdots\!61}{13\!\cdots\!72}a^{30}-\frac{15\!\cdots\!63}{13\!\cdots\!72}a^{29}+\frac{46\!\cdots\!71}{98\!\cdots\!48}a^{28}+\frac{33\!\cdots\!23}{19\!\cdots\!96}a^{27}-\frac{67\!\cdots\!57}{10\!\cdots\!24}a^{26}-\frac{22\!\cdots\!49}{13\!\cdots\!72}a^{25}+\frac{68\!\cdots\!59}{13\!\cdots\!72}a^{24}+\frac{55\!\cdots\!41}{39\!\cdots\!92}a^{23}-\frac{48\!\cdots\!69}{13\!\cdots\!72}a^{22}-\frac{54\!\cdots\!25}{69\!\cdots\!36}a^{21}+\frac{31\!\cdots\!53}{19\!\cdots\!96}a^{20}+\frac{14\!\cdots\!41}{35\!\cdots\!72}a^{19}-\frac{50\!\cdots\!15}{69\!\cdots\!36}a^{18}-\frac{27\!\cdots\!95}{27\!\cdots\!44}a^{17}+\frac{11\!\cdots\!17}{69\!\cdots\!36}a^{16}+\frac{58\!\cdots\!33}{27\!\cdots\!44}a^{15}-\frac{12\!\cdots\!35}{13\!\cdots\!72}a^{14}+\frac{26\!\cdots\!33}{12\!\cdots\!52}a^{13}-\frac{11\!\cdots\!19}{43\!\cdots\!96}a^{12}+\frac{78\!\cdots\!89}{34\!\cdots\!68}a^{11}-\frac{12\!\cdots\!77}{86\!\cdots\!92}a^{10}+\frac{38\!\cdots\!79}{31\!\cdots\!88}a^{9}-\frac{90\!\cdots\!53}{17\!\cdots\!84}a^{8}+\frac{42\!\cdots\!63}{86\!\cdots\!92}a^{7}-\frac{21\!\cdots\!53}{21\!\cdots\!48}a^{6}+\frac{11\!\cdots\!79}{86\!\cdots\!92}a^{5}+\frac{83\!\cdots\!91}{43\!\cdots\!96}a^{4}+\frac{11\!\cdots\!93}{43\!\cdots\!96}a^{3}+\frac{23\!\cdots\!23}{21\!\cdots\!48}a^{2}+\frac{18\!\cdots\!77}{10\!\cdots\!24}a+\frac{17\!\cdots\!43}{10\!\cdots\!24}$, $\frac{33\!\cdots\!95}{49\!\cdots\!24}a^{31}-\frac{36\!\cdots\!59}{13\!\cdots\!72}a^{30}-\frac{58\!\cdots\!51}{54\!\cdots\!62}a^{29}+\frac{31\!\cdots\!59}{69\!\cdots\!36}a^{28}+\frac{56\!\cdots\!71}{34\!\cdots\!68}a^{27}-\frac{40\!\cdots\!89}{69\!\cdots\!36}a^{26}-\frac{52\!\cdots\!89}{34\!\cdots\!68}a^{25}+\frac{32\!\cdots\!13}{69\!\cdots\!36}a^{24}+\frac{92\!\cdots\!57}{69\!\cdots\!36}a^{23}-\frac{46\!\cdots\!47}{13\!\cdots\!72}a^{22}-\frac{13\!\cdots\!59}{17\!\cdots\!84}a^{21}+\frac{51\!\cdots\!69}{34\!\cdots\!68}a^{20}+\frac{27\!\cdots\!29}{69\!\cdots\!36}a^{19}-\frac{95\!\cdots\!01}{13\!\cdots\!72}a^{18}-\frac{86\!\cdots\!51}{89\!\cdots\!68}a^{17}+\frac{22\!\cdots\!99}{13\!\cdots\!72}a^{16}+\frac{13\!\cdots\!91}{69\!\cdots\!36}a^{15}-\frac{12\!\cdots\!17}{13\!\cdots\!72}a^{14}+\frac{69\!\cdots\!29}{34\!\cdots\!68}a^{13}-\frac{17\!\cdots\!71}{69\!\cdots\!36}a^{12}+\frac{33\!\cdots\!91}{15\!\cdots\!32}a^{11}-\frac{22\!\cdots\!21}{17\!\cdots\!84}a^{10}+\frac{49\!\cdots\!45}{43\!\cdots\!96}a^{9}-\frac{84\!\cdots\!93}{17\!\cdots\!84}a^{8}+\frac{99\!\cdots\!73}{21\!\cdots\!48}a^{7}-\frac{38\!\cdots\!43}{43\!\cdots\!96}a^{6}+\frac{89\!\cdots\!43}{70\!\cdots\!06}a^{5}+\frac{13\!\cdots\!73}{43\!\cdots\!96}a^{4}+\frac{39\!\cdots\!37}{15\!\cdots\!32}a^{3}+\frac{21\!\cdots\!97}{19\!\cdots\!68}a^{2}+\frac{84\!\cdots\!69}{54\!\cdots\!62}a+\frac{92\!\cdots\!69}{54\!\cdots\!62}$, $\frac{39\!\cdots\!79}{27\!\cdots\!44}a^{31}-\frac{43\!\cdots\!69}{69\!\cdots\!36}a^{30}-\frac{14\!\cdots\!35}{69\!\cdots\!36}a^{29}+\frac{14\!\cdots\!91}{13\!\cdots\!72}a^{28}+\frac{42\!\cdots\!11}{13\!\cdots\!72}a^{27}-\frac{86\!\cdots\!09}{61\!\cdots\!28}a^{26}-\frac{37\!\cdots\!43}{13\!\cdots\!72}a^{25}+\frac{15\!\cdots\!83}{13\!\cdots\!72}a^{24}+\frac{67\!\cdots\!71}{27\!\cdots\!44}a^{23}-\frac{82\!\cdots\!55}{98\!\cdots\!48}a^{22}-\frac{17\!\cdots\!31}{13\!\cdots\!72}a^{21}+\frac{26\!\cdots\!89}{69\!\cdots\!36}a^{20}+\frac{19\!\cdots\!21}{27\!\cdots\!44}a^{19}-\frac{24\!\cdots\!63}{13\!\cdots\!72}a^{18}-\frac{34\!\cdots\!27}{25\!\cdots\!04}a^{17}+\frac{40\!\cdots\!51}{98\!\cdots\!48}a^{16}+\frac{74\!\cdots\!67}{27\!\cdots\!44}a^{15}-\frac{28\!\cdots\!87}{13\!\cdots\!72}a^{14}+\frac{12\!\cdots\!65}{24\!\cdots\!12}a^{13}-\frac{10\!\cdots\!41}{13\!\cdots\!72}a^{12}+\frac{51\!\cdots\!53}{69\!\cdots\!36}a^{11}-\frac{38\!\cdots\!81}{69\!\cdots\!36}a^{10}+\frac{15\!\cdots\!31}{34\!\cdots\!68}a^{9}-\frac{55\!\cdots\!45}{21\!\cdots\!48}a^{8}+\frac{44\!\cdots\!63}{24\!\cdots\!12}a^{7}-\frac{13\!\cdots\!25}{17\!\cdots\!84}a^{6}+\frac{43\!\cdots\!29}{86\!\cdots\!92}a^{5}-\frac{35\!\cdots\!69}{21\!\cdots\!48}a^{4}+\frac{19\!\cdots\!35}{21\!\cdots\!48}a^{3}-\frac{46\!\cdots\!31}{56\!\cdots\!48}a^{2}+\frac{14\!\cdots\!99}{21\!\cdots\!48}a-\frac{74\!\cdots\!59}{21\!\cdots\!48}$, $\frac{48\!\cdots\!79}{19\!\cdots\!96}a^{31}-\frac{30\!\cdots\!29}{27\!\cdots\!44}a^{30}-\frac{43\!\cdots\!69}{12\!\cdots\!52}a^{29}+\frac{26\!\cdots\!47}{13\!\cdots\!72}a^{28}+\frac{34\!\cdots\!61}{69\!\cdots\!36}a^{27}-\frac{34\!\cdots\!31}{13\!\cdots\!72}a^{26}-\frac{29\!\cdots\!91}{69\!\cdots\!36}a^{25}+\frac{28\!\cdots\!37}{13\!\cdots\!72}a^{24}+\frac{67\!\cdots\!99}{17\!\cdots\!84}a^{23}-\frac{41\!\cdots\!29}{27\!\cdots\!44}a^{22}-\frac{28\!\cdots\!33}{13\!\cdots\!72}a^{21}+\frac{48\!\cdots\!05}{69\!\cdots\!36}a^{20}+\frac{38\!\cdots\!07}{34\!\cdots\!68}a^{19}-\frac{83\!\cdots\!05}{25\!\cdots\!04}a^{18}-\frac{38\!\cdots\!41}{19\!\cdots\!96}a^{17}+\frac{21\!\cdots\!01}{27\!\cdots\!44}a^{16}+\frac{50\!\cdots\!71}{13\!\cdots\!72}a^{15}-\frac{10\!\cdots\!47}{27\!\cdots\!44}a^{14}+\frac{12\!\cdots\!25}{13\!\cdots\!72}a^{13}-\frac{17\!\cdots\!21}{12\!\cdots\!52}a^{12}+\frac{14\!\cdots\!51}{98\!\cdots\!48}a^{11}-\frac{18\!\cdots\!47}{17\!\cdots\!84}a^{10}+\frac{14\!\cdots\!91}{17\!\cdots\!84}a^{9}-\frac{17\!\cdots\!09}{34\!\cdots\!68}a^{8}+\frac{59\!\cdots\!33}{17\!\cdots\!84}a^{7}-\frac{36\!\cdots\!53}{21\!\cdots\!48}a^{6}+\frac{57\!\cdots\!85}{61\!\cdots\!28}a^{5}-\frac{30\!\cdots\!19}{86\!\cdots\!92}a^{4}+\frac{10\!\cdots\!09}{61\!\cdots\!28}a^{3}-\frac{12\!\cdots\!25}{43\!\cdots\!96}a^{2}-\frac{48\!\cdots\!07}{21\!\cdots\!48}a-\frac{11\!\cdots\!81}{10\!\cdots\!24}$, $\frac{13\!\cdots\!95}{39\!\cdots\!92}a^{31}-\frac{38\!\cdots\!13}{27\!\cdots\!44}a^{30}-\frac{39\!\cdots\!61}{69\!\cdots\!36}a^{29}+\frac{32\!\cdots\!87}{13\!\cdots\!72}a^{28}+\frac{10\!\cdots\!57}{12\!\cdots\!52}a^{27}-\frac{43\!\cdots\!17}{13\!\cdots\!72}a^{26}-\frac{11\!\cdots\!55}{13\!\cdots\!72}a^{25}+\frac{17\!\cdots\!69}{69\!\cdots\!36}a^{24}+\frac{19\!\cdots\!59}{27\!\cdots\!44}a^{23}-\frac{48\!\cdots\!05}{27\!\cdots\!44}a^{22}-\frac{55\!\cdots\!15}{13\!\cdots\!72}a^{21}+\frac{10\!\cdots\!25}{13\!\cdots\!72}a^{20}+\frac{57\!\cdots\!29}{27\!\cdots\!44}a^{19}-\frac{10\!\cdots\!89}{27\!\cdots\!44}a^{18}-\frac{19\!\cdots\!95}{39\!\cdots\!92}a^{17}+\frac{23\!\cdots\!15}{27\!\cdots\!44}a^{16}+\frac{29\!\cdots\!79}{27\!\cdots\!44}a^{15}-\frac{12\!\cdots\!55}{27\!\cdots\!44}a^{14}+\frac{36\!\cdots\!97}{34\!\cdots\!68}a^{13}-\frac{18\!\cdots\!61}{13\!\cdots\!72}a^{12}+\frac{11\!\cdots\!69}{98\!\cdots\!48}a^{11}-\frac{24\!\cdots\!87}{34\!\cdots\!68}a^{10}+\frac{21\!\cdots\!07}{34\!\cdots\!68}a^{9}-\frac{92\!\cdots\!99}{34\!\cdots\!68}a^{8}+\frac{43\!\cdots\!15}{17\!\cdots\!84}a^{7}-\frac{43\!\cdots\!85}{86\!\cdots\!92}a^{6}+\frac{85\!\cdots\!03}{12\!\cdots\!56}a^{5}+\frac{43\!\cdots\!89}{78\!\cdots\!72}a^{4}+\frac{21\!\cdots\!49}{15\!\cdots\!32}a^{3}+\frac{23\!\cdots\!73}{43\!\cdots\!96}a^{2}+\frac{16\!\cdots\!69}{19\!\cdots\!68}a+\frac{80\!\cdots\!65}{10\!\cdots\!24}$, $\frac{54\!\cdots\!15}{39\!\cdots\!92}a^{31}-\frac{15\!\cdots\!29}{27\!\cdots\!44}a^{30}-\frac{29\!\cdots\!69}{13\!\cdots\!72}a^{29}+\frac{13\!\cdots\!13}{13\!\cdots\!72}a^{28}+\frac{43\!\cdots\!89}{13\!\cdots\!72}a^{27}-\frac{17\!\cdots\!01}{13\!\cdots\!72}a^{26}-\frac{40\!\cdots\!97}{13\!\cdots\!72}a^{25}+\frac{70\!\cdots\!75}{69\!\cdots\!36}a^{24}+\frac{65\!\cdots\!05}{25\!\cdots\!04}a^{23}-\frac{18\!\cdots\!47}{25\!\cdots\!04}a^{22}-\frac{99\!\cdots\!23}{69\!\cdots\!36}a^{21}+\frac{45\!\cdots\!27}{13\!\cdots\!72}a^{20}+\frac{20\!\cdots\!97}{27\!\cdots\!44}a^{19}-\frac{42\!\cdots\!57}{27\!\cdots\!44}a^{18}-\frac{61\!\cdots\!55}{35\!\cdots\!72}a^{17}+\frac{98\!\cdots\!47}{27\!\cdots\!44}a^{16}+\frac{97\!\cdots\!93}{27\!\cdots\!44}a^{15}-\frac{52\!\cdots\!19}{27\!\cdots\!44}a^{14}+\frac{55\!\cdots\!73}{12\!\cdots\!52}a^{13}-\frac{82\!\cdots\!83}{13\!\cdots\!72}a^{12}+\frac{26\!\cdots\!29}{49\!\cdots\!24}a^{11}-\frac{12\!\cdots\!55}{34\!\cdots\!68}a^{10}+\frac{94\!\cdots\!65}{31\!\cdots\!88}a^{9}-\frac{52\!\cdots\!61}{34\!\cdots\!68}a^{8}+\frac{10\!\cdots\!79}{86\!\cdots\!92}a^{7}-\frac{34\!\cdots\!07}{86\!\cdots\!92}a^{6}+\frac{41\!\cdots\!55}{12\!\cdots\!56}a^{5}-\frac{45\!\cdots\!51}{86\!\cdots\!92}a^{4}+\frac{35\!\cdots\!69}{56\!\cdots\!48}a^{3}+\frac{42\!\cdots\!19}{39\!\cdots\!36}a^{2}+\frac{50\!\cdots\!13}{27\!\cdots\!81}a+\frac{53\!\cdots\!33}{10\!\cdots\!24}$, $\frac{37\!\cdots\!45}{34\!\cdots\!68}a^{31}-\frac{30\!\cdots\!65}{34\!\cdots\!68}a^{30}+\frac{90\!\cdots\!59}{17\!\cdots\!84}a^{29}+\frac{19\!\cdots\!21}{13\!\cdots\!72}a^{28}-\frac{14\!\cdots\!89}{31\!\cdots\!88}a^{27}-\frac{13\!\cdots\!61}{69\!\cdots\!36}a^{26}+\frac{78\!\cdots\!59}{49\!\cdots\!24}a^{25}+\frac{11\!\cdots\!23}{69\!\cdots\!36}a^{24}-\frac{18\!\cdots\!95}{17\!\cdots\!84}a^{23}-\frac{95\!\cdots\!01}{69\!\cdots\!36}a^{22}+\frac{10\!\cdots\!81}{98\!\cdots\!48}a^{21}+\frac{98\!\cdots\!85}{13\!\cdots\!72}a^{20}-\frac{18\!\cdots\!57}{43\!\cdots\!96}a^{19}-\frac{38\!\cdots\!93}{10\!\cdots\!24}a^{18}+\frac{23\!\cdots\!69}{69\!\cdots\!36}a^{17}+\frac{11\!\cdots\!23}{13\!\cdots\!72}a^{16}-\frac{56\!\cdots\!29}{69\!\cdots\!36}a^{15}-\frac{51\!\cdots\!87}{19\!\cdots\!96}a^{14}+\frac{64\!\cdots\!47}{69\!\cdots\!36}a^{13}-\frac{25\!\cdots\!69}{13\!\cdots\!72}a^{12}+\frac{38\!\cdots\!99}{17\!\cdots\!84}a^{11}-\frac{13\!\cdots\!27}{69\!\cdots\!36}a^{10}+\frac{22\!\cdots\!71}{17\!\cdots\!84}a^{9}-\frac{42\!\cdots\!49}{43\!\cdots\!96}a^{8}+\frac{22\!\cdots\!55}{43\!\cdots\!96}a^{7}-\frac{67\!\cdots\!59}{17\!\cdots\!84}a^{6}+\frac{57\!\cdots\!07}{43\!\cdots\!96}a^{5}-\frac{21\!\cdots\!07}{21\!\cdots\!48}a^{4}+\frac{91\!\cdots\!63}{54\!\cdots\!62}a^{3}-\frac{77\!\cdots\!69}{43\!\cdots\!96}a^{2}-\frac{10\!\cdots\!80}{27\!\cdots\!81}a-\frac{11\!\cdots\!95}{21\!\cdots\!48}$, $\frac{15\!\cdots\!15}{13\!\cdots\!72}a^{31}-\frac{35\!\cdots\!05}{69\!\cdots\!36}a^{30}-\frac{21\!\cdots\!17}{13\!\cdots\!72}a^{29}+\frac{12\!\cdots\!61}{13\!\cdots\!72}a^{28}+\frac{77\!\cdots\!27}{34\!\cdots\!68}a^{27}-\frac{80\!\cdots\!75}{69\!\cdots\!36}a^{26}-\frac{59\!\cdots\!97}{30\!\cdots\!64}a^{25}+\frac{74\!\cdots\!03}{78\!\cdots\!72}a^{24}+\frac{23\!\cdots\!29}{13\!\cdots\!72}a^{23}-\frac{48\!\cdots\!61}{69\!\cdots\!36}a^{22}-\frac{17\!\cdots\!87}{19\!\cdots\!96}a^{21}+\frac{45\!\cdots\!87}{13\!\cdots\!72}a^{20}+\frac{68\!\cdots\!13}{13\!\cdots\!72}a^{19}-\frac{10\!\cdots\!25}{69\!\cdots\!36}a^{18}-\frac{55\!\cdots\!17}{69\!\cdots\!36}a^{17}+\frac{49\!\cdots\!17}{13\!\cdots\!72}a^{16}+\frac{94\!\cdots\!01}{62\!\cdots\!76}a^{15}-\frac{30\!\cdots\!25}{17\!\cdots\!36}a^{14}+\frac{60\!\cdots\!91}{13\!\cdots\!72}a^{13}-\frac{91\!\cdots\!65}{13\!\cdots\!72}a^{12}+\frac{47\!\cdots\!77}{69\!\cdots\!36}a^{11}-\frac{35\!\cdots\!71}{69\!\cdots\!36}a^{10}+\frac{68\!\cdots\!15}{17\!\cdots\!84}a^{9}-\frac{42\!\cdots\!51}{17\!\cdots\!84}a^{8}+\frac{28\!\cdots\!21}{17\!\cdots\!84}a^{7}-\frac{14\!\cdots\!55}{17\!\cdots\!84}a^{6}+\frac{19\!\cdots\!01}{43\!\cdots\!96}a^{5}-\frac{77\!\cdots\!77}{43\!\cdots\!96}a^{4}+\frac{33\!\cdots\!97}{43\!\cdots\!96}a^{3}-\frac{71\!\cdots\!65}{43\!\cdots\!96}a^{2}-\frac{36\!\cdots\!21}{21\!\cdots\!48}a-\frac{12\!\cdots\!33}{21\!\cdots\!48}$, $\frac{41\!\cdots\!89}{19\!\cdots\!96}a^{31}-\frac{13\!\cdots\!47}{15\!\cdots\!44}a^{30}-\frac{22\!\cdots\!71}{69\!\cdots\!36}a^{29}+\frac{20\!\cdots\!79}{13\!\cdots\!72}a^{28}+\frac{32\!\cdots\!51}{69\!\cdots\!36}a^{27}-\frac{13\!\cdots\!65}{69\!\cdots\!36}a^{26}-\frac{26\!\cdots\!37}{62\!\cdots\!76}a^{25}+\frac{55\!\cdots\!59}{34\!\cdots\!68}a^{24}+\frac{52\!\cdots\!35}{13\!\cdots\!72}a^{23}-\frac{80\!\cdots\!01}{69\!\cdots\!36}a^{22}-\frac{14\!\cdots\!29}{69\!\cdots\!36}a^{21}+\frac{73\!\cdots\!37}{13\!\cdots\!72}a^{20}+\frac{15\!\cdots\!81}{13\!\cdots\!72}a^{19}-\frac{17\!\cdots\!89}{69\!\cdots\!36}a^{18}-\frac{46\!\cdots\!63}{19\!\cdots\!96}a^{17}+\frac{78\!\cdots\!83}{13\!\cdots\!72}a^{16}+\frac{66\!\cdots\!23}{13\!\cdots\!72}a^{15}-\frac{40\!\cdots\!75}{13\!\cdots\!72}a^{14}+\frac{30\!\cdots\!79}{43\!\cdots\!96}a^{13}-\frac{13\!\cdots\!67}{13\!\cdots\!72}a^{12}+\frac{11\!\cdots\!67}{12\!\cdots\!56}a^{11}-\frac{44\!\cdots\!93}{69\!\cdots\!36}a^{10}+\frac{45\!\cdots\!49}{86\!\cdots\!92}a^{9}-\frac{49\!\cdots\!73}{17\!\cdots\!84}a^{8}+\frac{46\!\cdots\!03}{21\!\cdots\!48}a^{7}-\frac{14\!\cdots\!49}{17\!\cdots\!84}a^{6}+\frac{17\!\cdots\!51}{30\!\cdots\!64}a^{5}-\frac{58\!\cdots\!89}{43\!\cdots\!96}a^{4}+\frac{30\!\cdots\!03}{28\!\cdots\!24}a^{3}+\frac{26\!\cdots\!89}{43\!\cdots\!96}a^{2}+\frac{30\!\cdots\!69}{24\!\cdots\!71}a-\frac{44\!\cdots\!15}{21\!\cdots\!48}$, $\frac{85\!\cdots\!99}{34\!\cdots\!68}a^{31}-\frac{26\!\cdots\!17}{25\!\cdots\!04}a^{30}-\frac{51\!\cdots\!97}{13\!\cdots\!72}a^{29}+\frac{17\!\cdots\!83}{98\!\cdots\!48}a^{28}+\frac{27\!\cdots\!81}{49\!\cdots\!24}a^{27}-\frac{32\!\cdots\!59}{13\!\cdots\!72}a^{26}-\frac{43\!\cdots\!67}{86\!\cdots\!92}a^{25}+\frac{26\!\cdots\!27}{13\!\cdots\!72}a^{24}+\frac{88\!\cdots\!71}{19\!\cdots\!96}a^{23}-\frac{34\!\cdots\!01}{25\!\cdots\!04}a^{22}-\frac{33\!\cdots\!47}{13\!\cdots\!72}a^{21}+\frac{11\!\cdots\!49}{17\!\cdots\!36}a^{20}+\frac{25\!\cdots\!81}{19\!\cdots\!96}a^{19}-\frac{80\!\cdots\!57}{27\!\cdots\!44}a^{18}-\frac{19\!\cdots\!41}{69\!\cdots\!36}a^{17}+\frac{18\!\cdots\!45}{27\!\cdots\!44}a^{16}+\frac{30\!\cdots\!19}{54\!\cdots\!62}a^{15}-\frac{96\!\cdots\!07}{27\!\cdots\!44}a^{14}+\frac{11\!\cdots\!57}{13\!\cdots\!72}a^{13}-\frac{80\!\cdots\!63}{69\!\cdots\!36}a^{12}+\frac{76\!\cdots\!61}{69\!\cdots\!36}a^{11}-\frac{53\!\cdots\!31}{69\!\cdots\!36}a^{10}+\frac{10\!\cdots\!39}{17\!\cdots\!84}a^{9}-\frac{10\!\cdots\!75}{31\!\cdots\!88}a^{8}+\frac{43\!\cdots\!49}{17\!\cdots\!84}a^{7}-\frac{15\!\cdots\!65}{15\!\cdots\!44}a^{6}+\frac{29\!\cdots\!29}{43\!\cdots\!96}a^{5}-\frac{14\!\cdots\!39}{86\!\cdots\!92}a^{4}+\frac{54\!\cdots\!81}{43\!\cdots\!96}a^{3}+\frac{37\!\cdots\!75}{54\!\cdots\!62}a^{2}+\frac{29\!\cdots\!21}{21\!\cdots\!48}a-\frac{57\!\cdots\!03}{21\!\cdots\!48}$, $\frac{34\!\cdots\!35}{27\!\cdots\!44}a^{31}-\frac{20\!\cdots\!83}{39\!\cdots\!92}a^{30}-\frac{24\!\cdots\!29}{12\!\cdots\!52}a^{29}+\frac{12\!\cdots\!05}{13\!\cdots\!72}a^{28}+\frac{39\!\cdots\!87}{13\!\cdots\!72}a^{27}-\frac{16\!\cdots\!97}{13\!\cdots\!72}a^{26}-\frac{35\!\cdots\!39}{13\!\cdots\!72}a^{25}+\frac{16\!\cdots\!75}{17\!\cdots\!84}a^{24}+\frac{63\!\cdots\!85}{27\!\cdots\!44}a^{23}-\frac{19\!\cdots\!05}{27\!\cdots\!44}a^{22}-\frac{87\!\cdots\!43}{69\!\cdots\!36}a^{21}+\frac{43\!\cdots\!77}{13\!\cdots\!72}a^{20}+\frac{18\!\cdots\!95}{27\!\cdots\!44}a^{19}-\frac{40\!\cdots\!97}{27\!\cdots\!44}a^{18}-\frac{40\!\cdots\!33}{27\!\cdots\!44}a^{17}+\frac{92\!\cdots\!63}{27\!\cdots\!44}a^{16}+\frac{81\!\cdots\!63}{27\!\cdots\!44}a^{15}-\frac{48\!\cdots\!59}{27\!\cdots\!44}a^{14}+\frac{58\!\cdots\!81}{13\!\cdots\!72}a^{13}-\frac{80\!\cdots\!23}{13\!\cdots\!72}a^{12}+\frac{94\!\cdots\!91}{17\!\cdots\!84}a^{11}-\frac{13\!\cdots\!75}{34\!\cdots\!68}a^{10}+\frac{15\!\cdots\!87}{49\!\cdots\!24}a^{9}-\frac{82\!\cdots\!25}{49\!\cdots\!24}a^{8}+\frac{68\!\cdots\!49}{54\!\cdots\!62}a^{7}-\frac{37\!\cdots\!47}{78\!\cdots\!72}a^{6}+\frac{30\!\cdots\!47}{86\!\cdots\!92}a^{5}-\frac{68\!\cdots\!41}{86\!\cdots\!92}a^{4}+\frac{27\!\cdots\!13}{43\!\cdots\!96}a^{3}+\frac{16\!\cdots\!61}{43\!\cdots\!96}a^{2}+\frac{59\!\cdots\!47}{77\!\cdots\!66}a-\frac{64\!\cdots\!49}{54\!\cdots\!62}$, $\frac{56\!\cdots\!99}{99\!\cdots\!48}a^{31}-\frac{41\!\cdots\!67}{18\!\cdots\!36}a^{30}-\frac{11\!\cdots\!09}{12\!\cdots\!56}a^{29}+\frac{39\!\cdots\!67}{99\!\cdots\!48}a^{28}+\frac{16\!\cdots\!55}{12\!\cdots\!56}a^{27}-\frac{73\!\cdots\!81}{14\!\cdots\!64}a^{26}-\frac{77\!\cdots\!79}{62\!\cdots\!28}a^{25}+\frac{41\!\cdots\!01}{99\!\cdots\!48}a^{24}+\frac{34\!\cdots\!25}{31\!\cdots\!64}a^{23}-\frac{84\!\cdots\!39}{28\!\cdots\!28}a^{22}-\frac{30\!\cdots\!77}{49\!\cdots\!24}a^{21}+\frac{66\!\cdots\!99}{49\!\cdots\!24}a^{20}+\frac{16\!\cdots\!71}{49\!\cdots\!24}a^{19}-\frac{12\!\cdots\!07}{19\!\cdots\!96}a^{18}-\frac{18\!\cdots\!71}{24\!\cdots\!12}a^{17}+\frac{36\!\cdots\!45}{25\!\cdots\!48}a^{16}+\frac{77\!\cdots\!61}{49\!\cdots\!24}a^{15}-\frac{15\!\cdots\!47}{19\!\cdots\!96}a^{14}+\frac{12\!\cdots\!65}{71\!\cdots\!32}a^{13}-\frac{23\!\cdots\!59}{99\!\cdots\!48}a^{12}+\frac{12\!\cdots\!75}{62\!\cdots\!28}a^{11}-\frac{16\!\cdots\!97}{12\!\cdots\!56}a^{10}+\frac{14\!\cdots\!57}{12\!\cdots\!56}a^{9}-\frac{13\!\cdots\!45}{24\!\cdots\!12}a^{8}+\frac{12\!\cdots\!65}{27\!\cdots\!97}a^{7}-\frac{39\!\cdots\!51}{31\!\cdots\!64}a^{6}+\frac{39\!\cdots\!49}{31\!\cdots\!64}a^{5}-\frac{72\!\cdots\!39}{62\!\cdots\!28}a^{4}+\frac{19\!\cdots\!11}{77\!\cdots\!16}a^{3}+\frac{28\!\cdots\!05}{44\!\cdots\!52}a^{2}+\frac{40\!\cdots\!29}{38\!\cdots\!58}a+\frac{55\!\cdots\!81}{77\!\cdots\!16}$ (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 21820415730078.887 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{16}\cdot 21820415730078.887 \cdot 528}{6\cdot\sqrt{1119917091733566341117149537716450109685760000000000000000}}\cr\approx \mathstrut & 0.338556105446417 \end{aligned}\] (assuming GRH)
Galois group
$D_4^2:C_2^3$ (as 32T12882):
A solvable group of order 512 |
The 80 conjugacy class representatives for $D_4^2:C_2^3$ |
Character table for $D_4^2:C_2^3$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 32 siblings: | data not computed |
Minimal sibling: | not computed |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | R | ${\href{/padicField/7.4.0.1}{4} }^{4}{,}\,{\href{/padicField/7.2.0.1}{2} }^{8}$ | ${\href{/padicField/11.2.0.1}{2} }^{16}$ | ${\href{/padicField/13.4.0.1}{4} }^{8}$ | ${\href{/padicField/17.8.0.1}{8} }^{4}$ | ${\href{/padicField/19.4.0.1}{4} }^{4}{,}\,{\href{/padicField/19.2.0.1}{2} }^{4}{,}\,{\href{/padicField/19.1.0.1}{1} }^{8}$ | ${\href{/padicField/23.4.0.1}{4} }^{4}{,}\,{\href{/padicField/23.2.0.1}{2} }^{8}$ | R | ${\href{/padicField/31.2.0.1}{2} }^{16}$ | ${\href{/padicField/37.8.0.1}{8} }^{4}$ | ${\href{/padicField/41.4.0.1}{4} }^{4}{,}\,{\href{/padicField/41.2.0.1}{2} }^{8}$ | ${\href{/padicField/43.4.0.1}{4} }^{8}$ | ${\href{/padicField/47.8.0.1}{8} }^{4}$ | ${\href{/padicField/53.4.0.1}{4} }^{8}$ | ${\href{/padicField/59.4.0.1}{4} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.8.12.2 | $x^{8} + 16 x^{7} + 120 x^{6} + 546 x^{5} + 1646 x^{4} + 3352 x^{3} + 4457 x^{2} + 3470 x + 1203$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ |
2.8.12.2 | $x^{8} + 16 x^{7} + 120 x^{6} + 546 x^{5} + 1646 x^{4} + 3352 x^{3} + 4457 x^{2} + 3470 x + 1203$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ | |
2.8.12.2 | $x^{8} + 16 x^{7} + 120 x^{6} + 546 x^{5} + 1646 x^{4} + 3352 x^{3} + 4457 x^{2} + 3470 x + 1203$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ | |
2.8.12.2 | $x^{8} + 16 x^{7} + 120 x^{6} + 546 x^{5} + 1646 x^{4} + 3352 x^{3} + 4457 x^{2} + 3470 x + 1203$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ | |
\(3\) | 3.16.8.1 | $x^{16} + 24 x^{14} + 4 x^{13} + 254 x^{12} + 24 x^{11} + 1508 x^{10} - 172 x^{9} + 5273 x^{8} - 2344 x^{7} + 11640 x^{6} - 7392 x^{5} + 22724 x^{4} - 10768 x^{3} + 19008 x^{2} - 11056 x + 8596$ | $2$ | $8$ | $8$ | $C_8\times C_2$ | $[\ ]_{2}^{8}$ |
3.16.8.1 | $x^{16} + 24 x^{14} + 4 x^{13} + 254 x^{12} + 24 x^{11} + 1508 x^{10} - 172 x^{9} + 5273 x^{8} - 2344 x^{7} + 11640 x^{6} - 7392 x^{5} + 22724 x^{4} - 10768 x^{3} + 19008 x^{2} - 11056 x + 8596$ | $2$ | $8$ | $8$ | $C_8\times C_2$ | $[\ ]_{2}^{8}$ | |
\(5\) | 5.8.4.1 | $x^{8} + 80 x^{7} + 2428 x^{6} + 33688 x^{5} + 195810 x^{4} + 305952 x^{3} + 870132 x^{2} + 1037416 x + 503089$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
5.8.4.1 | $x^{8} + 80 x^{7} + 2428 x^{6} + 33688 x^{5} + 195810 x^{4} + 305952 x^{3} + 870132 x^{2} + 1037416 x + 503089$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
5.8.4.1 | $x^{8} + 80 x^{7} + 2428 x^{6} + 33688 x^{5} + 195810 x^{4} + 305952 x^{3} + 870132 x^{2} + 1037416 x + 503089$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
5.8.4.1 | $x^{8} + 80 x^{7} + 2428 x^{6} + 33688 x^{5} + 195810 x^{4} + 305952 x^{3} + 870132 x^{2} + 1037416 x + 503089$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
\(29\) | 29.2.0.1 | $x^{2} + 24 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
29.2.0.1 | $x^{2} + 24 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
29.2.0.1 | $x^{2} + 24 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
29.2.0.1 | $x^{2} + 24 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
29.2.0.1 | $x^{2} + 24 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
29.2.0.1 | $x^{2} + 24 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
29.2.0.1 | $x^{2} + 24 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
29.2.0.1 | $x^{2} + 24 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
29.4.2.1 | $x^{4} + 1440 x^{3} + 535166 x^{2} + 12071520 x + 1504089$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
29.4.2.1 | $x^{4} + 1440 x^{3} + 535166 x^{2} + 12071520 x + 1504089$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
29.4.2.1 | $x^{4} + 1440 x^{3} + 535166 x^{2} + 12071520 x + 1504089$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
29.4.2.1 | $x^{4} + 1440 x^{3} + 535166 x^{2} + 12071520 x + 1504089$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
\(1049\) | Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $4$ | $2$ | $2$ | $2$ | ||||
Deg $4$ | $2$ | $2$ | $2$ |