Normalized defining polynomial
\( x^{32} + 194 x^{30} + 15908 x^{28} + 724784 x^{26} + 20303264 x^{24} + 365958496 x^{22} + 4325759232 x^{20} + 33633640320 x^{18} + 170321943040 x^{16} + 547571276288 x^{14} + 1064307168256 x^{12} + 1149333823488 x^{10} + 609862000640 x^{8} + 153945686016 x^{6} + 17972805632 x^{4} + 820051968 x^{2} + 6356992 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{4} a^{5}$, $\frac{1}{8} a^{6}$, $\frac{1}{8} a^{7}$, $\frac{1}{16} a^{8}$, $\frac{1}{16} a^{9}$, $\frac{1}{32} a^{10}$, $\frac{1}{32} a^{11}$, $\frac{1}{64} a^{12}$, $\frac{1}{64} a^{13}$, $\frac{1}{128} a^{14}$, $\frac{1}{128} a^{15}$, $\frac{1}{256} a^{16}$, $\frac{1}{256} a^{17}$, $\frac{1}{512} a^{18}$, $\frac{1}{512} a^{19}$, $\frac{1}{1024} a^{20}$, $\frac{1}{1024} a^{21}$, $\frac{1}{2048} a^{22}$, $\frac{1}{2048} a^{23}$, $\frac{1}{249856} a^{24} - \frac{15}{124928} a^{22} - \frac{3}{15616} a^{20} - \frac{9}{15616} a^{18} + \frac{7}{7808} a^{16} + \frac{19}{7808} a^{14} - \frac{5}{976} a^{12} - \frac{11}{1952} a^{10} + \frac{5}{488} a^{8} + \frac{7}{488} a^{6} + \frac{9}{122} a^{4} - \frac{9}{61} a^{2} + \frac{5}{61}$, $\frac{1}{249856} a^{25} - \frac{15}{124928} a^{23} - \frac{3}{15616} a^{21} - \frac{9}{15616} a^{19} + \frac{7}{7808} a^{17} + \frac{19}{7808} a^{15} - \frac{5}{976} a^{13} - \frac{11}{1952} a^{11} + \frac{5}{488} a^{9} + \frac{7}{488} a^{7} + \frac{9}{122} a^{5} - \frac{9}{61} a^{3} + \frac{5}{61} a$, $\frac{1}{499712} a^{26} + \frac{7}{124928} a^{22} - \frac{15}{62464} a^{20} - \frac{3}{7808} a^{18} - \frac{15}{15616} a^{16} + \frac{21}{7808} a^{14} - \frac{3}{1952} a^{12} + \frac{7}{488} a^{10} - \frac{13}{488} a^{8} + \frac{1}{488} a^{6} + \frac{2}{61} a^{4} - \frac{21}{122} a^{2} + \frac{14}{61}$, $\frac{1}{499712} a^{27} + \frac{7}{124928} a^{23} - \frac{15}{62464} a^{21} - \frac{3}{7808} a^{19} - \frac{15}{15616} a^{17} + \frac{21}{7808} a^{15} - \frac{3}{1952} a^{13} + \frac{7}{488} a^{11} - \frac{13}{488} a^{9} + \frac{1}{488} a^{7} + \frac{2}{61} a^{5} - \frac{21}{122} a^{3} + \frac{14}{61} a$, $\frac{1}{60964864} a^{28} + \frac{3}{7620608} a^{26} + \frac{7}{15241216} a^{24} + \frac{1289}{7620608} a^{22} + \frac{13}{952576} a^{20} + \frac{125}{238144} a^{18} - \frac{903}{476288} a^{16} - \frac{243}{238144} a^{14} + \frac{17}{238144} a^{12} - \frac{849}{119072} a^{10} - \frac{337}{14884} a^{8} + \frac{203}{29768} a^{6} + \frac{1539}{14884} a^{4} - \frac{424}{3721} a^{2} + \frac{534}{3721}$, $\frac{1}{60964864} a^{29} + \frac{3}{7620608} a^{27} + \frac{7}{15241216} a^{25} + \frac{1289}{7620608} a^{23} + \frac{13}{952576} a^{21} + \frac{125}{238144} a^{19} - \frac{903}{476288} a^{17} - \frac{243}{238144} a^{15} + \frac{17}{238144} a^{13} - \frac{849}{119072} a^{11} - \frac{337}{14884} a^{9} + \frac{203}{29768} a^{7} + \frac{1539}{14884} a^{5} - \frac{424}{3721} a^{3} + \frac{534}{3721} a$, $\frac{1}{201860478345873256042052882272583303882629634796322816} a^{30} - \frac{245123265655362253689065314151889497859696885}{50465119586468314010513220568145825970657408699080704} a^{28} - \frac{2112886561781305654042692496442881241285562323}{12616279896617078502628305142036456492664352174770176} a^{26} - \frac{14755960071945527389751995127952296686445231}{12993079193220472196321632484074620486781001209856} a^{24} + \frac{2680036503117950843139671830562881436293641684565}{12616279896617078502628305142036456492664352174770176} a^{22} + \frac{753358662599018459846842343717450244441471876847}{1577034987077134812828538142754557061583044021846272} a^{20} + \frac{823823569032494196415000723780134210412362658827}{3154069974154269625657076285509114123166088043692544} a^{18} - \frac{2164973509160085569455317119806940470692554741327}{1577034987077134812828538142754557061583044021846272} a^{16} + \frac{512021127111393137782122550056571876478175014117}{788517493538567406414269071377278530791522010923136} a^{14} - \frac{6805504712517969666490844342816895911708567327}{394258746769283703207134535688639265395761005461568} a^{12} - \frac{1145285774732348460786643458845171686684721081709}{197129373384641851603567267844319632697880502730784} a^{10} + \frac{1252467059091478869589761926725958528293858916435}{98564686692320925801783633922159816348940251365392} a^{8} + \frac{1024990450345270074233334148983731422466396304259}{49282343346160462900891816961079908174470125682696} a^{6} - \frac{2984633444043698815465661888051649950335157733603}{24641171673080231450445908480539954087235062841348} a^{4} - \frac{75788799137323362451775352002529622640338250893}{6160292918270057862611477120134988521808765710337} a^{2} + \frac{1392490906508925479664348349638778278128277265499}{6160292918270057862611477120134988521808765710337}$, $\frac{1}{201860478345873256042052882272583303882629634796322816} a^{31} - \frac{245123265655362253689065314151889497859696885}{50465119586468314010513220568145825970657408699080704} a^{29} - \frac{2112886561781305654042692496442881241285562323}{12616279896617078502628305142036456492664352174770176} a^{27} - \frac{14755960071945527389751995127952296686445231}{12993079193220472196321632484074620486781001209856} a^{25} + \frac{2680036503117950843139671830562881436293641684565}{12616279896617078502628305142036456492664352174770176} a^{23} + \frac{753358662599018459846842343717450244441471876847}{1577034987077134812828538142754557061583044021846272} a^{21} + \frac{823823569032494196415000723780134210412362658827}{3154069974154269625657076285509114123166088043692544} a^{19} - \frac{2164973509160085569455317119806940470692554741327}{1577034987077134812828538142754557061583044021846272} a^{17} + \frac{512021127111393137782122550056571876478175014117}{788517493538567406414269071377278530791522010923136} a^{15} - \frac{6805504712517969666490844342816895911708567327}{394258746769283703207134535688639265395761005461568} a^{13} - \frac{1145285774732348460786643458845171686684721081709}{197129373384641851603567267844319632697880502730784} a^{11} + \frac{1252467059091478869589761926725958528293858916435}{98564686692320925801783633922159816348940251365392} a^{9} + \frac{1024990450345270074233334148983731422466396304259}{49282343346160462900891816961079908174470125682696} a^{7} - \frac{2984633444043698815465661888051649950335157733603}{24641171673080231450445908480539954087235062841348} a^{5} - \frac{75788799137323362451775352002529622640338250893}{6160292918270057862611477120134988521808765710337} a^{3} + \frac{1392490906508925479664348349638778278128277265499}{6160292918270057862611477120134988521808765710337} a$
Class group and class number
Not computed
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 32 |
| The 32 conjugacy class representatives for $C_{32}$ |
| Character table for $C_{32}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{97}) \), 4.4.912673.1, 8.8.80798284478113.1, 16.16.633251189136789386043275954593.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16^{2}$ | $32$ | $32$ | $16^{2}$ | $32$ | $32$ | $32$ | $32$ | $32$ | $16^{2}$ | $32$ | $32$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{4}$ | $16^{2}$ | $32$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 97 | Data not computed | ||||||