# SageMath code for working with number field 32.0.1033818800357475102568684143000990752577071087616.1 # (Note that not all these functions may be available, and some may take a long time to execute.) # Define the number field: x = polygen(QQ); K. = NumberField(x^32 - 4*x^31 + 8*x^30 - 16*x^29 + 25*x^28 - 24*x^27 + 24*x^26 - 20*x^25 - 36*x^23 + 152*x^22 - 256*x^21 + 425*x^20 - 584*x^19 + 296*x^18 + 4*x^17 + 113*x^16 + 8*x^15 + 1184*x^14 - 4672*x^13 + 6800*x^12 - 8192*x^11 + 9728*x^10 - 4608*x^9 - 10240*x^7 + 24576*x^6 - 49152*x^5 + 102400*x^4 - 131072*x^3 + 131072*x^2 - 131072*x + 65536) # Defining polynomial: K.defining_polynomial() # Degree over Q: K.degree() # Signature: K.signature() # Discriminant: K.disc() # Ramified primes: K.disc().support() # Integral basis: K.integral_basis() # Class group: K.class_group().invariants() # Unit group: UK = K.unit_group() # Unit rank: UK.rank() # Generator for roots of unity: UK.torsion_generator() # Fundamental units: UK.fundamental_units() # Regulator: K.regulator() # Galois group: K.galois_group(type='pari') # Frobenius cycle types: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]