# SageMath code for working with number field 31.31.606473279060866185803408353837168008326030742006308575695635765007438922801.1 # Some of these functions may take a long time to execute (this depends on the field). # Define the number field: x = polygen(QQ); K. = NumberField(x^31 - x^30 - 150*x^29 + 117*x^28 + 9434*x^27 - 4958*x^26 - 328880*x^25 + 78328*x^24 + 7098810*x^23 + 507925*x^22 - 100297691*x^21 - 39217806*x^20 + 950942678*x^19 + 677567200*x^18 - 6056859921*x^17 - 6293114670*x^16 + 25303767350*x^15 + 35315191500*x^14 - 65145555320*x^13 - 122001770825*x^12 + 87706314807*x^11 + 253609179978*x^10 - 19776440614*x^9 - 299693882286*x^8 - 98200795275*x^7 + 175359843704*x^6 + 113820457794*x^5 - 30260338943*x^4 - 38729335872*x^3 - 5811762482*x^2 + 1056847214*x - 26458109) # Defining polynomial: K.defining_polynomial() # Degree over Q: K.degree() # Signature: K.signature() # Discriminant: K.disc() # Ramified primes: K.disc().support() # Autmorphisms: K.automorphisms() # Integral basis: K.integral_basis() # Class group: K.class_group().invariants() # Unit group: UK = K.unit_group() # Unit rank: UK.rank() # Generator for roots of unity: UK.torsion_generator() # Fundamental units: UK.fundamental_units() # Regulator: K.regulator() # Analytic class number formula: # self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K. = NumberField(x^31 - x^30 - 150*x^29 + 117*x^28 + 9434*x^27 - 4958*x^26 - 328880*x^25 + 78328*x^24 + 7098810*x^23 + 507925*x^22 - 100297691*x^21 - 39217806*x^20 + 950942678*x^19 + 677567200*x^18 - 6056859921*x^17 - 6293114670*x^16 + 25303767350*x^15 + 35315191500*x^14 - 65145555320*x^13 - 122001770825*x^12 + 87706314807*x^11 + 253609179978*x^10 - 19776440614*x^9 - 299693882286*x^8 - 98200795275*x^7 + 175359843704*x^6 + 113820457794*x^5 - 30260338943*x^4 - 38729335872*x^3 - 5811762482*x^2 + 1056847214*x - 26458109) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK)))) # Intermediate fields: K.subfields()[1:-1] # Galois group: K.galois_group(type='pari') # Frobenius cycle types: # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]