Normalized defining polynomial
\( x^{31} - x - 4 \)
Invariants
Degree: | $31$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[1, 15]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(-18327886165296381817189229292602149543677096810012151519\)\(\medspace = -\,23\cdot 1693\cdot 3697\cdot 19843\cdot 14132537\cdot 75771043\cdot 5991663366536301415229073661\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $60.63$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $23, 1693, 3697, 19843, 14132537, 75771043, 5991663366536301415229073661$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $1$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{2} a^{16} - \frac{1}{2} a$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{18} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{19} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{20} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{21} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{22} - \frac{1}{2} a^{7}$, $\frac{1}{2} a^{23} - \frac{1}{2} a^{8}$, $\frac{1}{2} a^{24} - \frac{1}{2} a^{9}$, $\frac{1}{2} a^{25} - \frac{1}{2} a^{10}$, $\frac{1}{2} a^{26} - \frac{1}{2} a^{11}$, $\frac{1}{2} a^{27} - \frac{1}{2} a^{12}$, $\frac{1}{2} a^{28} - \frac{1}{2} a^{13}$, $\frac{1}{2} a^{29} - \frac{1}{2} a^{14}$, $\frac{1}{2} a^{30} - \frac{1}{2} a^{15}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $15$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 4169052629874545.0 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
$S_{31}$ (as 31T12):
A non-solvable group of order 8222838654177922817725562880000000 |
The 6842 conjugacy class representatives for $S_{31}$ are not computed |
Character table for $S_{31}$ is not computed |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/2.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }$ | $29{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }$ | $24{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | ${\href{/LocalNumberField/7.9.0.1}{9} }{,}\,{\href{/LocalNumberField/7.7.0.1}{7} }{,}\,{\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | $23{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ | $30{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | $28{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | ${\href{/LocalNumberField/19.14.0.1}{14} }{,}\,{\href{/LocalNumberField/19.9.0.1}{9} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | R | $28{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{3}$ | $31$ | $30{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.9.0.1}{9} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.11.0.1}{11} }{,}\,{\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | $26{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{3}$ | $25{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }$ | $30{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
23 | Data not computed | ||||||
1693 | Data not computed | ||||||
3697 | Data not computed | ||||||
19843 | Data not computed | ||||||
14132537 | Data not computed | ||||||
75771043 | Data not computed | ||||||
5991663366536301415229073661 | Data not computed |