Properties

Label 30.30.6950375229...4813.1
Degree $30$
Signature $[30, 0]$
Discriminant $11^{24}\cdot 13^{25}$
Root discriminant $57.73$
Ramified primes $11, 13$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_{30}$ (as 30T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -9, 117, 330, -3328, -5360, 40851, 45664, -261009, -215958, 941075, 578875, -1995511, -898459, 2566790, 853441, -2071990, -515602, 1077688, 201754, -366235, -51172, 81301, 8267, -11582, -813, 1012, 44, -49, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^30 - x^29 - 49*x^28 + 44*x^27 + 1012*x^26 - 813*x^25 - 11582*x^24 + 8267*x^23 + 81301*x^22 - 51172*x^21 - 366235*x^20 + 201754*x^19 + 1077688*x^18 - 515602*x^17 - 2071990*x^16 + 853441*x^15 + 2566790*x^14 - 898459*x^13 - 1995511*x^12 + 578875*x^11 + 941075*x^10 - 215958*x^9 - 261009*x^8 + 45664*x^7 + 40851*x^6 - 5360*x^5 - 3328*x^4 + 330*x^3 + 117*x^2 - 9*x - 1)
 
gp: K = bnfinit(x^30 - x^29 - 49*x^28 + 44*x^27 + 1012*x^26 - 813*x^25 - 11582*x^24 + 8267*x^23 + 81301*x^22 - 51172*x^21 - 366235*x^20 + 201754*x^19 + 1077688*x^18 - 515602*x^17 - 2071990*x^16 + 853441*x^15 + 2566790*x^14 - 898459*x^13 - 1995511*x^12 + 578875*x^11 + 941075*x^10 - 215958*x^9 - 261009*x^8 + 45664*x^7 + 40851*x^6 - 5360*x^5 - 3328*x^4 + 330*x^3 + 117*x^2 - 9*x - 1, 1)
 

Normalized defining polynomial

\( x^{30} - x^{29} - 49 x^{28} + 44 x^{27} + 1012 x^{26} - 813 x^{25} - 11582 x^{24} + 8267 x^{23} + 81301 x^{22} - 51172 x^{21} - 366235 x^{20} + 201754 x^{19} + 1077688 x^{18} - 515602 x^{17} - 2071990 x^{16} + 853441 x^{15} + 2566790 x^{14} - 898459 x^{13} - 1995511 x^{12} + 578875 x^{11} + 941075 x^{10} - 215958 x^{9} - 261009 x^{8} + 45664 x^{7} + 40851 x^{6} - 5360 x^{5} - 3328 x^{4} + 330 x^{3} + 117 x^{2} - 9 x - 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $30$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[30, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(69503752297329754905479727341904896738456941915804813=11^{24}\cdot 13^{25}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $57.73$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $11, 13$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(143=11\cdot 13\)
Dirichlet character group:    $\lbrace$$\chi_{143}(64,·)$, $\chi_{143}(1,·)$, $\chi_{143}(3,·)$, $\chi_{143}(4,·)$, $\chi_{143}(133,·)$, $\chi_{143}(100,·)$, $\chi_{143}(113,·)$, $\chi_{143}(9,·)$, $\chi_{143}(75,·)$, $\chi_{143}(12,·)$, $\chi_{143}(14,·)$, $\chi_{143}(16,·)$, $\chi_{143}(81,·)$, $\chi_{143}(82,·)$, $\chi_{143}(23,·)$, $\chi_{143}(25,·)$, $\chi_{143}(27,·)$, $\chi_{143}(92,·)$, $\chi_{143}(69,·)$, $\chi_{143}(36,·)$, $\chi_{143}(38,·)$, $\chi_{143}(103,·)$, $\chi_{143}(42,·)$, $\chi_{143}(108,·)$, $\chi_{143}(48,·)$, $\chi_{143}(49,·)$, $\chi_{143}(114,·)$, $\chi_{143}(53,·)$, $\chi_{143}(56,·)$, $\chi_{143}(126,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $\frac{1}{131} a^{27} + \frac{43}{131} a^{26} + \frac{15}{131} a^{25} - \frac{58}{131} a^{24} + \frac{16}{131} a^{23} - \frac{37}{131} a^{22} + \frac{65}{131} a^{21} - \frac{44}{131} a^{20} - \frac{12}{131} a^{19} + \frac{29}{131} a^{18} + \frac{13}{131} a^{17} + \frac{31}{131} a^{16} - \frac{22}{131} a^{15} - \frac{11}{131} a^{14} + \frac{27}{131} a^{13} - \frac{42}{131} a^{12} - \frac{53}{131} a^{11} - \frac{55}{131} a^{10} + \frac{28}{131} a^{9} + \frac{59}{131} a^{8} + \frac{16}{131} a^{7} - \frac{62}{131} a^{6} + \frac{11}{131} a^{5} - \frac{19}{131} a^{4} - \frac{38}{131} a^{3} - \frac{26}{131} a^{2} + \frac{8}{131} a - \frac{14}{131}$, $\frac{1}{131} a^{28} - \frac{48}{131} a^{25} + \frac{21}{131} a^{24} + \frac{61}{131} a^{23} - \frac{47}{131} a^{22} + \frac{43}{131} a^{21} + \frac{46}{131} a^{20} + \frac{21}{131} a^{19} - \frac{55}{131} a^{18} - \frac{4}{131} a^{17} - \frac{45}{131} a^{16} + \frac{18}{131} a^{15} - \frac{24}{131} a^{14} - \frac{24}{131} a^{13} + \frac{50}{131} a^{12} - \frac{3}{131} a^{11} + \frac{35}{131} a^{10} + \frac{34}{131} a^{9} - \frac{32}{131} a^{8} + \frac{36}{131} a^{7} + \frac{57}{131} a^{6} + \frac{32}{131} a^{5} - \frac{7}{131} a^{4} + \frac{36}{131} a^{3} - \frac{53}{131} a^{2} + \frac{35}{131} a - \frac{53}{131}$, $\frac{1}{616537124762503966057151703873365739834955781} a^{29} - \frac{1858876207217761109478379885851256717890099}{616537124762503966057151703873365739834955781} a^{28} - \frac{396328004214736982931294455040567183419262}{616537124762503966057151703873365739834955781} a^{27} + \frac{246276653871961532786865765679233450009974893}{616537124762503966057151703873365739834955781} a^{26} + \frac{76247795954495324461127377451972851214983127}{616537124762503966057151703873365739834955781} a^{25} - \frac{58287849949403776555234631311609091406933462}{616537124762503966057151703873365739834955781} a^{24} + \frac{178455913268925159344697090872472272231576255}{616537124762503966057151703873365739834955781} a^{23} + \frac{233220437968818537962935008822115850533095692}{616537124762503966057151703873365739834955781} a^{22} - \frac{195098778723701555418775385323934047412177334}{616537124762503966057151703873365739834955781} a^{21} - \frac{89389161648687044057597516698823714515941720}{616537124762503966057151703873365739834955781} a^{20} - \frac{53193969804121388689175647365191986692032658}{616537124762503966057151703873365739834955781} a^{19} + \frac{138665119284342606633910889893066681784358285}{616537124762503966057151703873365739834955781} a^{18} - \frac{171496994209386905911711361903633589259674127}{616537124762503966057151703873365739834955781} a^{17} - \frac{135116913904443593533661796373311521371147420}{616537124762503966057151703873365739834955781} a^{16} - \frac{144234555665866566962510576880735243741092182}{616537124762503966057151703873365739834955781} a^{15} - \frac{306880255410148637013306040673702466537464531}{616537124762503966057151703873365739834955781} a^{14} + \frac{40915825328516183937689530788350816250535830}{616537124762503966057151703873365739834955781} a^{13} + \frac{139896590913101583827125339093851200002846583}{616537124762503966057151703873365739834955781} a^{12} + \frac{40983396800866632184453051167450953430922941}{616537124762503966057151703873365739834955781} a^{11} - \frac{241887803547477730130153017437999112130551138}{616537124762503966057151703873365739834955781} a^{10} + \frac{300022408162222712506325958389721753091024579}{616537124762503966057151703873365739834955781} a^{9} + \frac{148473882914844606484970803020957488686473557}{616537124762503966057151703873365739834955781} a^{8} - \frac{62537130476008394396668297893288119395927420}{616537124762503966057151703873365739834955781} a^{7} + \frac{153195924487865642959704615179958590800442150}{616537124762503966057151703873365739834955781} a^{6} + \frac{137786901201764042287401600512235060893935817}{616537124762503966057151703873365739834955781} a^{5} - \frac{108403151855840829708140204081537554757942427}{616537124762503966057151703873365739834955781} a^{4} - \frac{467104045434569929160290293264703168375194}{616537124762503966057151703873365739834955781} a^{3} - \frac{41761681818335908650690084082325462657316442}{616537124762503966057151703873365739834955781} a^{2} - \frac{5721714962908458545332027262085324777182201}{616537124762503966057151703873365739834955781} a + \frac{156146195994799579076472615871903214561517901}{616537124762503966057151703873365739834955781}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $29$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 59204301251900104 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{30}$ (as 30T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 30
The 30 conjugacy class representatives for $C_{30}$
Character table for $C_{30}$ is not computed

Intermediate fields

\(\Q(\sqrt{13}) \), 3.3.169.1, \(\Q(\zeta_{11})^+\), \(\Q(\zeta_{13})^+\), 10.10.79589952003133.1, 15.15.432659002790862279847129.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $30$ $15^{2}$ ${\href{/LocalNumberField/5.10.0.1}{10} }^{3}$ $30$ R R $15^{2}$ $30$ ${\href{/LocalNumberField/23.3.0.1}{3} }^{10}$ $15^{2}$ ${\href{/LocalNumberField/31.10.0.1}{10} }^{3}$ $30$ $30$ ${\href{/LocalNumberField/43.3.0.1}{3} }^{10}$ ${\href{/LocalNumberField/47.10.0.1}{10} }^{3}$ ${\href{/LocalNumberField/53.5.0.1}{5} }^{6}$ $30$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
11Data not computed
13Data not computed