Normalized defining polynomial
\( x^{30} - x^{29} - 29 x^{28} + 28 x^{27} + 378 x^{26} - 351 x^{25} - 2925 x^{24} + 2600 x^{23} + 14950 x^{22} - 12650 x^{21} - 53130 x^{20} + 42504 x^{19} + 134596 x^{18} - 100947 x^{17} - 245157 x^{16} + 170544 x^{15} + 319770 x^{14} - 203490 x^{13} - 293930 x^{12} + 167960 x^{11} + 184756 x^{10} - 92378 x^{9} - 75582 x^{8} + 31824 x^{7} + 18564 x^{6} - 6188 x^{5} - 2380 x^{4} + 560 x^{3} + 120 x^{2} - 15 x - 1 \)
Invariants
Degree: | $30$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[30, 0]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(5950661074415937716058277355262049126611998411687341\)\(\medspace = 61^{29}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $53.19$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $61$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Gal(K/\Q)|$: | $30$ | ||
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(61\) | ||
Dirichlet character group: | $\lbrace$$\chi_{61}(1,·)$, $\chi_{61}(3,·)$, $\chi_{61}(4,·)$, $\chi_{61}(5,·)$, $\chi_{61}(9,·)$, $\chi_{61}(12,·)$, $\chi_{61}(13,·)$, $\chi_{61}(14,·)$, $\chi_{61}(15,·)$, $\chi_{61}(16,·)$, $\chi_{61}(19,·)$, $\chi_{61}(20,·)$, $\chi_{61}(22,·)$, $\chi_{61}(25,·)$, $\chi_{61}(27,·)$, $\chi_{61}(34,·)$, $\chi_{61}(36,·)$, $\chi_{61}(39,·)$, $\chi_{61}(41,·)$, $\chi_{61}(42,·)$, $\chi_{61}(45,·)$, $\chi_{61}(46,·)$, $\chi_{61}(47,·)$, $\chi_{61}(48,·)$, $\chi_{61}(49,·)$, $\chi_{61}(52,·)$, $\chi_{61}(56,·)$, $\chi_{61}(57,·)$, $\chi_{61}(58,·)$, $\chi_{61}(60,·)$$\rbrace$ | ||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $29$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 17190292874679612 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A cyclic group of order 30 |
The 30 conjugacy class representatives for $C_{30}$ |
Character table for $C_{30}$ is not computed |
Intermediate fields
\(\Q(\sqrt{61}) \), 3.3.3721.1, 5.5.13845841.1, 6.6.844596301.1, 10.10.11694146092834141.1, 15.15.9876832533361318095112441.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | $30$ | ${\href{/LocalNumberField/3.5.0.1}{5} }^{6}$ | $15^{2}$ | $30$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{15}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{10}$ | $30$ | $15^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{5}$ | $30$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{3}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{6}$ | $30$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{10}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{3}$ | $30$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
61 | Data not computed |