Properties

Label 30.30.3654472495...8125.1
Degree $30$
Signature $[30, 0]$
Discriminant $3^{40}\cdot 5^{15}\cdot 11^{24}$
Root discriminant $65.88$
Ramified primes $3, 5, 11$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_{30}$ (as 30T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![3761, -54867, 135282, 783780, -2216865, -4591656, 12736408, 14865612, -37774599, -30352364, 65947266, 41223645, -72317630, -37627170, 51874065, 23065539, -25018704, -9503007, 8242129, 2628246, -1861710, -483539, 285615, 57798, -28987, -4269, 1845, 175, -66, -3, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^30 - 3*x^29 - 66*x^28 + 175*x^27 + 1845*x^26 - 4269*x^25 - 28987*x^24 + 57798*x^23 + 285615*x^22 - 483539*x^21 - 1861710*x^20 + 2628246*x^19 + 8242129*x^18 - 9503007*x^17 - 25018704*x^16 + 23065539*x^15 + 51874065*x^14 - 37627170*x^13 - 72317630*x^12 + 41223645*x^11 + 65947266*x^10 - 30352364*x^9 - 37774599*x^8 + 14865612*x^7 + 12736408*x^6 - 4591656*x^5 - 2216865*x^4 + 783780*x^3 + 135282*x^2 - 54867*x + 3761)
 
gp: K = bnfinit(x^30 - 3*x^29 - 66*x^28 + 175*x^27 + 1845*x^26 - 4269*x^25 - 28987*x^24 + 57798*x^23 + 285615*x^22 - 483539*x^21 - 1861710*x^20 + 2628246*x^19 + 8242129*x^18 - 9503007*x^17 - 25018704*x^16 + 23065539*x^15 + 51874065*x^14 - 37627170*x^13 - 72317630*x^12 + 41223645*x^11 + 65947266*x^10 - 30352364*x^9 - 37774599*x^8 + 14865612*x^7 + 12736408*x^6 - 4591656*x^5 - 2216865*x^4 + 783780*x^3 + 135282*x^2 - 54867*x + 3761, 1)
 

Normalized defining polynomial

\( x^{30} - 3 x^{29} - 66 x^{28} + 175 x^{27} + 1845 x^{26} - 4269 x^{25} - 28987 x^{24} + 57798 x^{23} + 285615 x^{22} - 483539 x^{21} - 1861710 x^{20} + 2628246 x^{19} + 8242129 x^{18} - 9503007 x^{17} - 25018704 x^{16} + 23065539 x^{15} + 51874065 x^{14} - 37627170 x^{13} - 72317630 x^{12} + 41223645 x^{11} + 65947266 x^{10} - 30352364 x^{9} - 37774599 x^{8} + 14865612 x^{7} + 12736408 x^{6} - 4591656 x^{5} - 2216865 x^{4} + 783780 x^{3} + 135282 x^{2} - 54867 x + 3761 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $30$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[30, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(3654472495532549188442614010323982591205830108642578125=3^{40}\cdot 5^{15}\cdot 11^{24}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $65.88$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 5, 11$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(495=3^{2}\cdot 5\cdot 11\)
Dirichlet character group:    $\lbrace$$\chi_{495}(256,·)$, $\chi_{495}(1,·)$, $\chi_{495}(4,·)$, $\chi_{495}(454,·)$, $\chi_{495}(199,·)$, $\chi_{495}(136,·)$, $\chi_{495}(394,·)$, $\chi_{495}(331,·)$, $\chi_{495}(64,·)$, $\chi_{495}(16,·)$, $\chi_{495}(466,·)$, $\chi_{495}(334,·)$, $\chi_{495}(214,·)$, $\chi_{495}(196,·)$, $\chi_{495}(346,·)$, $\chi_{495}(91,·)$, $\chi_{495}(31,·)$, $\chi_{495}(289,·)$, $\chi_{495}(34,·)$, $\chi_{495}(229,·)$, $\chi_{495}(421,·)$, $\chi_{495}(166,·)$, $\chi_{495}(169,·)$, $\chi_{495}(364,·)$, $\chi_{495}(301,·)$, $\chi_{495}(49,·)$, $\chi_{495}(181,·)$, $\chi_{495}(361,·)$, $\chi_{495}(379,·)$, $\chi_{495}(124,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $\frac{1}{36079} a^{27} + \frac{15857}{36079} a^{26} - \frac{1663}{36079} a^{25} + \frac{10210}{36079} a^{24} - \frac{17112}{36079} a^{23} - \frac{3240}{36079} a^{22} - \frac{14882}{36079} a^{21} - \frac{6566}{36079} a^{20} + \frac{14917}{36079} a^{19} - \frac{568}{36079} a^{18} - \frac{16616}{36079} a^{17} - \frac{8599}{36079} a^{16} - \frac{15928}{36079} a^{15} + \frac{16159}{36079} a^{14} - \frac{2910}{36079} a^{13} - \frac{1251}{36079} a^{12} - \frac{3828}{36079} a^{11} - \frac{12343}{36079} a^{10} + \frac{13693}{36079} a^{9} + \frac{1847}{36079} a^{8} + \frac{5241}{36079} a^{7} + \frac{17183}{36079} a^{6} - \frac{5281}{36079} a^{5} - \frac{10578}{36079} a^{4} - \frac{5601}{36079} a^{3} - \frac{3919}{36079} a^{2} + \frac{12355}{36079} a + \frac{6073}{36079}$, $\frac{1}{633244212479} a^{28} + \frac{6172976}{633244212479} a^{27} + \frac{153501116398}{633244212479} a^{26} + \frac{211101417623}{633244212479} a^{25} + \frac{108263239474}{633244212479} a^{24} + \frac{207309407051}{633244212479} a^{23} + \frac{192921962381}{633244212479} a^{22} + \frac{245386682033}{633244212479} a^{21} - \frac{196706883652}{633244212479} a^{20} - \frac{52324749838}{633244212479} a^{19} - \frac{181374451114}{633244212479} a^{18} + \frac{253826008303}{633244212479} a^{17} + \frac{232073966731}{633244212479} a^{16} + \frac{51556578238}{633244212479} a^{15} + \frac{151697067350}{633244212479} a^{14} + \frac{27657017600}{633244212479} a^{13} - \frac{219829328829}{633244212479} a^{12} - \frac{295483140776}{633244212479} a^{11} + \frac{64085111858}{633244212479} a^{10} - \frac{101447592587}{633244212479} a^{9} + \frac{175043360848}{633244212479} a^{8} - \frac{64778341868}{633244212479} a^{7} - \frac{162222765831}{633244212479} a^{6} - \frac{169817204679}{633244212479} a^{5} - \frac{754096313}{7115103511} a^{4} + \frac{288192029149}{633244212479} a^{3} + \frac{1740610230}{5809579931} a^{2} - \frac{157960056768}{633244212479} a - \frac{160358222394}{633244212479}$, $\frac{1}{13787163140472731130779706170819052526458477360748852916295617051} a^{29} + \frac{9209513570089388415004668393681024364078583860502988}{13787163140472731130779706170819052526458477360748852916295617051} a^{28} - \frac{184507603492570964719865116753405086129199691657739856252481}{13787163140472731130779706170819052526458477360748852916295617051} a^{27} + \frac{1020554921963238818567019771880210548484547046694843590161083448}{13787163140472731130779706170819052526458477360748852916295617051} a^{26} - \frac{2298625557041958303903028555398141201252540132422990198477034592}{13787163140472731130779706170819052526458477360748852916295617051} a^{25} - \frac{2052433653651329288929392516725483693411670331480771449814959252}{13787163140472731130779706170819052526458477360748852916295617051} a^{24} + \frac{2927466466283274028188443509872133997655017804136356343485742212}{13787163140472731130779706170819052526458477360748852916295617051} a^{23} + \frac{1905136876678963876695990044638985638710313743201167608003539615}{13787163140472731130779706170819052526458477360748852916295617051} a^{22} - \frac{6662172756771772454575236798648176576354003921441873881008809798}{13787163140472731130779706170819052526458477360748852916295617051} a^{21} + \frac{4467486494566751764488070956027940008454880676727647123901364302}{13787163140472731130779706170819052526458477360748852916295617051} a^{20} - \frac{6808747315996153615934975215355716307930452219628787278123296585}{13787163140472731130779706170819052526458477360748852916295617051} a^{19} + \frac{1342827551845073245846565056693171298435311515117129163572199195}{13787163140472731130779706170819052526458477360748852916295617051} a^{18} - \frac{2910784429045507562879481410163034047316898429909530197546044914}{13787163140472731130779706170819052526458477360748852916295617051} a^{17} - \frac{2645406782356401867113751899996798786851328090694379332076823332}{13787163140472731130779706170819052526458477360748852916295617051} a^{16} + \frac{1864537517173005568133773936552803413242241976510934818944022553}{13787163140472731130779706170819052526458477360748852916295617051} a^{15} - \frac{1601047133697678843550665556532635620277284131813022851930725991}{13787163140472731130779706170819052526458477360748852916295617051} a^{14} - \frac{417979537461606264666969329700767154773358252523254027206732917}{13787163140472731130779706170819052526458477360748852916295617051} a^{13} - \frac{4419899007166105372865259915634970208929910354166944445646799618}{13787163140472731130779706170819052526458477360748852916295617051} a^{12} + \frac{4007003400917832670840795515745602301496778631561518722928228281}{13787163140472731130779706170819052526458477360748852916295617051} a^{11} - \frac{5562259328158421397503066955686839117619474543722719294949323501}{13787163140472731130779706170819052526458477360748852916295617051} a^{10} + \frac{1315374479571832511252838573268096054387319477189120795961696630}{13787163140472731130779706170819052526458477360748852916295617051} a^{9} - \frac{679996974909486590787756750275454742320644191359898931217548224}{13787163140472731130779706170819052526458477360748852916295617051} a^{8} + \frac{6039860274217365074721449523995711440912968011904040647623525927}{13787163140472731130779706170819052526458477360748852916295617051} a^{7} - \frac{4180863908152999470566869008169703634497407698271363788555559533}{13787163140472731130779706170819052526458477360748852916295617051} a^{6} + \frac{174506056204996016584285955084248617246005553446364814990392989}{13787163140472731130779706170819052526458477360748852916295617051} a^{5} - \frac{745687711036791166309630593829255336766781563843122033228242400}{13787163140472731130779706170819052526458477360748852916295617051} a^{4} + \frac{121532846561531045151408222845482199462572030650247178616669818}{13787163140472731130779706170819052526458477360748852916295617051} a^{3} + \frac{1748646658869528912166770449817181064911693759087769784710879439}{13787163140472731130779706170819052526458477360748852916295617051} a^{2} + \frac{5412541689677617708664986623221827142216356696379843959713438786}{13787163140472731130779706170819052526458477360748852916295617051} a - \frac{2435999811549608643867466235936154319354981639667260611864159526}{13787163140472731130779706170819052526458477360748852916295617051}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $29$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 636236955303921700 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{30}$ (as 30T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 30
The 30 conjugacy class representatives for $C_{30}$
Character table for $C_{30}$ is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), \(\Q(\zeta_{9})^+\), \(\Q(\zeta_{11})^+\), 6.6.820125.1, 10.10.669871503125.1, 15.15.10943023107606534329121.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $30$ R R $30$ R $30$ ${\href{/LocalNumberField/17.10.0.1}{10} }^{3}$ ${\href{/LocalNumberField/19.5.0.1}{5} }^{6}$ ${\href{/LocalNumberField/23.6.0.1}{6} }^{5}$ $15^{2}$ $15^{2}$ ${\href{/LocalNumberField/37.10.0.1}{10} }^{3}$ $15^{2}$ ${\href{/LocalNumberField/43.6.0.1}{6} }^{5}$ $30$ ${\href{/LocalNumberField/53.10.0.1}{10} }^{3}$ $15^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
3Data not computed
5Data not computed
$11$11.15.12.1$x^{15} + 165 x^{10} + 5324 x^{5} + 323433$$5$$3$$12$$C_{15}$$[\ ]_{5}^{3}$
11.15.12.1$x^{15} + 165 x^{10} + 5324 x^{5} + 323433$$5$$3$$12$$C_{15}$$[\ ]_{5}^{3}$