Normalized defining polynomial
\( x^{30} - 50 x^{28} + 1055 x^{26} - 16 x^{25} - 12350 x^{24} + 515 x^{23} + 88775 x^{22} - 6490 x^{21} - 409677 x^{20} + 42000 x^{19} + 1234120 x^{18} - 152550 x^{17} - 2428495 x^{16} + 319842 x^{15} + 3095850 x^{14} - 389415 x^{13} - 2523400 x^{12} + 277525 x^{11} + 1287922 x^{10} - 115475 x^{9} - 396240 x^{8} + 27675 x^{7} + 68440 x^{6} - 3807 x^{5} - 5775 x^{4} + 305 x^{3} + 175 x^{2} - 10 x - 1 \)
Invariants
| Degree: | $30$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[30, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(35434884492252294752034913472016341984272003173828125=5^{51}\cdot 7^{20}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $56.45$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(175=5^{2}\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{175}(64,·)$, $\chi_{175}(1,·)$, $\chi_{175}(4,·)$, $\chi_{175}(134,·)$, $\chi_{175}(71,·)$, $\chi_{175}(9,·)$, $\chi_{175}(74,·)$, $\chi_{175}(11,·)$, $\chi_{175}(141,·)$, $\chi_{175}(79,·)$, $\chi_{175}(16,·)$, $\chi_{175}(81,·)$, $\chi_{175}(149,·)$, $\chi_{175}(86,·)$, $\chi_{175}(151,·)$, $\chi_{175}(156,·)$, $\chi_{175}(29,·)$, $\chi_{175}(144,·)$, $\chi_{175}(99,·)$, $\chi_{175}(36,·)$, $\chi_{175}(39,·)$, $\chi_{175}(169,·)$, $\chi_{175}(106,·)$, $\chi_{175}(44,·)$, $\chi_{175}(109,·)$, $\chi_{175}(46,·)$, $\chi_{175}(114,·)$, $\chi_{175}(51,·)$, $\chi_{175}(116,·)$, $\chi_{175}(121,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $\frac{1}{3127920622011438224102857257954752717037778153104322649} a^{29} - \frac{818445336242511988617914915736037301948327415068887621}{3127920622011438224102857257954752717037778153104322649} a^{28} - \frac{193645643853457988810375203757278012879986620308505344}{3127920622011438224102857257954752717037778153104322649} a^{27} + \frac{122032978172731528529349537932406618864967549254126933}{3127920622011438224102857257954752717037778153104322649} a^{26} + \frac{166041983238636619192515984473126759650421781054468991}{3127920622011438224102857257954752717037778153104322649} a^{25} + \frac{762170927229882025519073430077127531011485291706220420}{3127920622011438224102857257954752717037778153104322649} a^{24} - \frac{1225385551563962709975871422731001875990460824682854318}{3127920622011438224102857257954752717037778153104322649} a^{23} + \frac{1503502215892784975379812584481550005481823976812002690}{3127920622011438224102857257954752717037778153104322649} a^{22} + \frac{989895704295722654671073452870011808680271499509330326}{3127920622011438224102857257954752717037778153104322649} a^{21} - \frac{523148185920421465887477889013410226024126583628271193}{3127920622011438224102857257954752717037778153104322649} a^{20} - \frac{685804483143634809446583932302357269071525322874678030}{3127920622011438224102857257954752717037778153104322649} a^{19} - \frac{557359742418798993988546830935855703844244988541836733}{3127920622011438224102857257954752717037778153104322649} a^{18} - \frac{395222805415411007426126377525827287917645536303507426}{3127920622011438224102857257954752717037778153104322649} a^{17} + \frac{706285160656912907977673663814272853402218190518308759}{3127920622011438224102857257954752717037778153104322649} a^{16} - \frac{469345485947647147671272694638514463453310436631490092}{3127920622011438224102857257954752717037778153104322649} a^{15} + \frac{1293875246579970370882313272733981454197966875422679403}{3127920622011438224102857257954752717037778153104322649} a^{14} - \frac{1326492954259222594732664755074376772571069575014617136}{3127920622011438224102857257954752717037778153104322649} a^{13} + \frac{251818680068724966591359610891399913287436750095614677}{3127920622011438224102857257954752717037778153104322649} a^{12} + \frac{1273924738431125289442842560753898944372073151738183563}{3127920622011438224102857257954752717037778153104322649} a^{11} - \frac{32571223517041462832814441886130376097946977622972112}{3127920622011438224102857257954752717037778153104322649} a^{10} + \frac{580170180974519067156702893010808386799763546777026748}{3127920622011438224102857257954752717037778153104322649} a^{9} - \frac{4232029249076675130203684516099737484646387902032924}{3127920622011438224102857257954752717037778153104322649} a^{8} - \frac{175823257215512454921949520865504851342958541344999186}{3127920622011438224102857257954752717037778153104322649} a^{7} + \frac{85841311851891255540085432308725768113914962120567731}{3127920622011438224102857257954752717037778153104322649} a^{6} + \frac{1032752370200447680342747615109354838821047923207485578}{3127920622011438224102857257954752717037778153104322649} a^{5} - \frac{252395185812336229872975069909926502857457380679908024}{3127920622011438224102857257954752717037778153104322649} a^{4} - \frac{377719726594260333383331437031031218449889405424593864}{3127920622011438224102857257954752717037778153104322649} a^{3} - \frac{1045799120581013476095249171926043385394654769293690}{6966415639223693149449570730411475984493937980187801} a^{2} + \frac{50078666046625909806601242917662265063982322019858446}{3127920622011438224102857257954752717037778153104322649} a - \frac{638486369982411233556901956213716079731325215189781345}{3127920622011438224102857257954752717037778153104322649}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $29$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 46287634688780824 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 30 |
| The 30 conjugacy class representatives for $C_{30}$ |
| Character table for $C_{30}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{7})^+\), 5.5.390625.1, 6.6.300125.1, \(\Q(\zeta_{25})^+\), 15.15.16836836874485015869140625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $30$ | $30$ | R | R | $15^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{3}$ | $30$ | $15^{2}$ | $30$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{6}$ | $15^{2}$ | $30$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{6}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{15}$ | $30$ | $30$ | $15^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $7$ | 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |