Normalized defining polynomial
\( x^{30} - 54 x^{28} + 1233 x^{26} - 15732 x^{24} + 124974 x^{22} - 651888 x^{20} + 2294766 x^{18} - 5517450 x^{16} + 9065763 x^{14} - 10076778 x^{12} + 7410609 x^{10} - 3473442 x^{8} + 979290 x^{6} - 151875 x^{4} + 10935 x^{2} - 243 \)
Invariants
| Degree: | $30$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[30, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(31245017777306374823059337284350587021473200026746355712=2^{30}\cdot 3^{45}\cdot 11^{24}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $70.77$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(396=2^{2}\cdot 3^{2}\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{396}(383,·)$, $\chi_{396}(1,·)$, $\chi_{396}(323,·)$, $\chi_{396}(133,·)$, $\chi_{396}(71,·)$, $\chi_{396}(265,·)$, $\chi_{396}(203,·)$, $\chi_{396}(335,·)$, $\chi_{396}(251,·)$, $\chi_{396}(23,·)$, $\chi_{396}(25,·)$, $\chi_{396}(155,·)$, $\chi_{396}(361,·)$, $\chi_{396}(157,·)$, $\chi_{396}(287,·)$, $\chi_{396}(289,·)$, $\chi_{396}(229,·)$, $\chi_{396}(37,·)$, $\chi_{396}(97,·)$, $\chi_{396}(119,·)$, $\chi_{396}(169,·)$, $\chi_{396}(301,·)$, $\chi_{396}(47,·)$, $\chi_{396}(49,·)$, $\chi_{396}(179,·)$, $\chi_{396}(181,·)$, $\chi_{396}(311,·)$, $\chi_{396}(313,·)$, $\chi_{396}(59,·)$, $\chi_{396}(191,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6}$, $\frac{1}{3} a^{7}$, $\frac{1}{3} a^{8}$, $\frac{1}{3} a^{9}$, $\frac{1}{3} a^{10}$, $\frac{1}{3} a^{11}$, $\frac{1}{9} a^{12}$, $\frac{1}{9} a^{13}$, $\frac{1}{9} a^{14}$, $\frac{1}{9} a^{15}$, $\frac{1}{9} a^{16}$, $\frac{1}{9} a^{17}$, $\frac{1}{27} a^{18}$, $\frac{1}{27} a^{19}$, $\frac{1}{27} a^{20}$, $\frac{1}{27} a^{21}$, $\frac{1}{27} a^{22}$, $\frac{1}{27} a^{23}$, $\frac{1}{81} a^{24}$, $\frac{1}{81} a^{25}$, $\frac{1}{16119} a^{26} - \frac{94}{16119} a^{24} - \frac{61}{5373} a^{22} - \frac{88}{5373} a^{20} - \frac{8}{597} a^{18} + \frac{94}{1791} a^{16} - \frac{25}{597} a^{14} + \frac{95}{1791} a^{12} - \frac{11}{199} a^{10} + \frac{40}{597} a^{8} - \frac{95}{597} a^{6} - \frac{51}{199} a^{4} - \frac{2}{199} a^{2} + \frac{98}{199}$, $\frac{1}{16119} a^{27} - \frac{94}{16119} a^{25} - \frac{61}{5373} a^{23} - \frac{88}{5373} a^{21} - \frac{8}{597} a^{19} + \frac{94}{1791} a^{17} - \frac{25}{597} a^{15} + \frac{95}{1791} a^{13} - \frac{11}{199} a^{11} + \frac{40}{597} a^{9} - \frac{95}{597} a^{7} - \frac{51}{199} a^{5} - \frac{2}{199} a^{3} + \frac{98}{199} a$, $\frac{1}{21903478389465471} a^{28} + \frac{154081532849}{7301159463155157} a^{26} - \frac{131010207677525}{21903478389465471} a^{24} - \frac{85349501463760}{7301159463155157} a^{22} - \frac{59640972579644}{7301159463155157} a^{20} + \frac{1786084798342}{7301159463155157} a^{18} - \frac{128066173696048}{2433719821051719} a^{16} + \frac{102265829605355}{2433719821051719} a^{14} - \frac{24624299898893}{2433719821051719} a^{12} + \frac{111557765609594}{811239940350573} a^{10} - \frac{64682639803519}{811239940350573} a^{8} - \frac{4174442717978}{811239940350573} a^{6} - \frac{107202787826711}{270413313450191} a^{4} + \frac{48845719161674}{270413313450191} a^{2} + \frac{23632150421837}{270413313450191}$, $\frac{1}{21903478389465471} a^{29} + \frac{154081532849}{7301159463155157} a^{27} - \frac{131010207677525}{21903478389465471} a^{25} - \frac{85349501463760}{7301159463155157} a^{23} - \frac{59640972579644}{7301159463155157} a^{21} + \frac{1786084798342}{7301159463155157} a^{19} - \frac{128066173696048}{2433719821051719} a^{17} + \frac{102265829605355}{2433719821051719} a^{15} - \frac{24624299898893}{2433719821051719} a^{13} + \frac{111557765609594}{811239940350573} a^{11} - \frac{64682639803519}{811239940350573} a^{9} - \frac{4174442717978}{811239940350573} a^{7} - \frac{107202787826711}{270413313450191} a^{5} + \frac{48845719161674}{270413313450191} a^{3} + \frac{23632150421837}{270413313450191} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $29$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1288437153447097900 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 30 |
| The 30 conjugacy class representatives for $C_{30}$ |
| Character table for $C_{30}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{3}) \), \(\Q(\zeta_{9})^+\), \(\Q(\zeta_{11})^+\), \(\Q(\zeta_{36})^+\), 10.10.53339349076992.1, 15.15.10943023107606534329121.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $30$ | $30$ | R | $15^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{3}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{3}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{10}$ | $30$ | $30$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{6}$ | $30$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{5}$ | $15^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{3}$ | $15^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $11$ | 11.15.12.1 | $x^{15} + 165 x^{10} + 5324 x^{5} + 323433$ | $5$ | $3$ | $12$ | $C_{15}$ | $[\ ]_{5}^{3}$ |
| 11.15.12.1 | $x^{15} + 165 x^{10} + 5324 x^{5} + 323433$ | $5$ | $3$ | $12$ | $C_{15}$ | $[\ ]_{5}^{3}$ | |