\\ Pari/GP code for working with number field 30.30.254863675513583304379979153001217903140700917991797.1 \\ (Note that not all these functions may be available, and some may take a long time to execute.) \\ Define the number field: K = bnfinit(x^30 - x^29 - 30*x^28 + 30*x^27 + 404*x^26 - 404*x^25 - 3223*x^24 + 3223*x^23 + 16927*x^22 - 16927*x^21 - 61503*x^20 + 61503*x^19 + 158101*x^18 - 158101*x^17 - 288950*x^16 + 288950*x^15 + 371908*x^14 - 371908*x^13 - 329002*x^12 + 329002*x^11 + 191674*x^10 - 191674*x^9 - 68664*x^8 + 68664*x^7 + 13548*x^6 - 13548*x^5 - 1208*x^4 + 1208*x^3 + 32*x^2 - 32*x + 1, 1) \\ Defining polynomial: K.pol \\ Degree over Q: poldegree(K.pol) \\ Signature: K.sign \\ Discriminant: K.disc \\ Ramified primes: factor(abs(K.disc))[,1]~ \\ Integral basis: K.zk \\ Class group: K.clgp \\ Unit rank: K.fu \\ Generator for roots of unity: K.tu[2] \\ Fundamental units: K.fu \\ Regulator: K.reg \\ Galois group: polgalois(K.pol) \\ Frobenius cycle types: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$: idealfactors = idealprimedec(K, p); \\ get the data vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])