Properties

Label 30.30.1907168175...0304.1
Degree $30$
Signature $[30, 0]$
Discriminant $2^{30}\cdot 31^{29}$
Root discriminant $55.29$
Ramified primes $2, 31$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_{30}$ (as 30T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-31, 0, 1240, 0, -14756, 0, 82212, 0, -260338, 0, 520676, 0, -700910, 0, 660858, 0, -447051, 0, 219604, 0, -78430, 0, 20150, 0, -3627, 0, 434, 0, -31, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^30 - 31*x^28 + 434*x^26 - 3627*x^24 + 20150*x^22 - 78430*x^20 + 219604*x^18 - 447051*x^16 + 660858*x^14 - 700910*x^12 + 520676*x^10 - 260338*x^8 + 82212*x^6 - 14756*x^4 + 1240*x^2 - 31)
 
gp: K = bnfinit(x^30 - 31*x^28 + 434*x^26 - 3627*x^24 + 20150*x^22 - 78430*x^20 + 219604*x^18 - 447051*x^16 + 660858*x^14 - 700910*x^12 + 520676*x^10 - 260338*x^8 + 82212*x^6 - 14756*x^4 + 1240*x^2 - 31, 1)
 

Normalized defining polynomial

\( x^{30} - 31 x^{28} + 434 x^{26} - 3627 x^{24} + 20150 x^{22} - 78430 x^{20} + 219604 x^{18} - 447051 x^{16} + 660858 x^{14} - 700910 x^{12} + 520676 x^{10} - 260338 x^{8} + 82212 x^{6} - 14756 x^{4} + 1240 x^{2} - 31 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $30$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[30, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(19071681753690303660125890064344467877570851377250304=2^{30}\cdot 31^{29}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $55.29$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 31$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(124=2^{2}\cdot 31\)
Dirichlet character group:    $\lbrace$$\chi_{124}(123,·)$, $\chi_{124}(1,·)$, $\chi_{124}(3,·)$, $\chi_{124}(5,·)$, $\chi_{124}(97,·)$, $\chi_{124}(9,·)$, $\chi_{124}(79,·)$, $\chi_{124}(11,·)$, $\chi_{124}(109,·)$, $\chi_{124}(15,·)$, $\chi_{124}(81,·)$, $\chi_{124}(75,·)$, $\chi_{124}(83,·)$, $\chi_{124}(23,·)$, $\chi_{124}(25,·)$, $\chi_{124}(27,·)$, $\chi_{124}(69,·)$, $\chi_{124}(33,·)$, $\chi_{124}(91,·)$, $\chi_{124}(101,·)$, $\chi_{124}(113,·)$, $\chi_{124}(41,·)$, $\chi_{124}(43,·)$, $\chi_{124}(45,·)$, $\chi_{124}(99,·)$, $\chi_{124}(49,·)$, $\chi_{124}(115,·)$, $\chi_{124}(55,·)$, $\chi_{124}(121,·)$, $\chi_{124}(119,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $29$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 31320406865860856 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{30}$ (as 30T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 30
The 30 conjugacy class representatives for $C_{30}$
Character table for $C_{30}$ is not computed

Intermediate fields

\(\Q(\sqrt{31}) \), 3.3.961.1, 5.5.923521.1, 6.6.1832265664.1, 10.10.27074173092527104.1, \(\Q(\zeta_{31})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R $15^{2}$ ${\href{/LocalNumberField/5.3.0.1}{3} }^{10}$ $30$ $15^{2}$ $30$ $30$ $30$ ${\href{/LocalNumberField/23.5.0.1}{5} }^{6}$ ${\href{/LocalNumberField/29.10.0.1}{10} }^{3}$ R ${\href{/LocalNumberField/37.6.0.1}{6} }^{5}$ $15^{2}$ $15^{2}$ ${\href{/LocalNumberField/47.10.0.1}{10} }^{3}$ $30$ $30$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.10.10.7$x^{10} - x^{8} - x^{6} - 3 x^{2} - 7$$2$$5$$10$$C_{10}$$[2]^{5}$
2.10.10.7$x^{10} - x^{8} - x^{6} - 3 x^{2} - 7$$2$$5$$10$$C_{10}$$[2]^{5}$
2.10.10.7$x^{10} - x^{8} - x^{6} - 3 x^{2} - 7$$2$$5$$10$$C_{10}$$[2]^{5}$
31Data not computed