Properties

Label 30.30.1895371146...4109.1
Degree $30$
Signature $[30, 0]$
Discriminant $3^{15}\cdot 7^{25}\cdot 11^{24}$
Root discriminant $59.69$
Ramified primes $3, 7, 11$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_{30}$ (as 30T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -24, -72, 2108, -1394, -50085, 71252, 479104, -740486, -2212210, 3295409, 5341306, -7422000, -7021358, 9167438, 5402217, -6690617, -2562602, 3033009, 771582, -878198, -148985, 163955, 18280, -19532, -1371, 1427, 57, -58, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^30 - x^29 - 58*x^28 + 57*x^27 + 1427*x^26 - 1371*x^25 - 19532*x^24 + 18280*x^23 + 163955*x^22 - 148985*x^21 - 878198*x^20 + 771582*x^19 + 3033009*x^18 - 2562602*x^17 - 6690617*x^16 + 5402217*x^15 + 9167438*x^14 - 7021358*x^13 - 7422000*x^12 + 5341306*x^11 + 3295409*x^10 - 2212210*x^9 - 740486*x^8 + 479104*x^7 + 71252*x^6 - 50085*x^5 - 1394*x^4 + 2108*x^3 - 72*x^2 - 24*x + 1)
 
gp: K = bnfinit(x^30 - x^29 - 58*x^28 + 57*x^27 + 1427*x^26 - 1371*x^25 - 19532*x^24 + 18280*x^23 + 163955*x^22 - 148985*x^21 - 878198*x^20 + 771582*x^19 + 3033009*x^18 - 2562602*x^17 - 6690617*x^16 + 5402217*x^15 + 9167438*x^14 - 7021358*x^13 - 7422000*x^12 + 5341306*x^11 + 3295409*x^10 - 2212210*x^9 - 740486*x^8 + 479104*x^7 + 71252*x^6 - 50085*x^5 - 1394*x^4 + 2108*x^3 - 72*x^2 - 24*x + 1, 1)
 

Normalized defining polynomial

\( x^{30} - x^{29} - 58 x^{28} + 57 x^{27} + 1427 x^{26} - 1371 x^{25} - 19532 x^{24} + 18280 x^{23} + 163955 x^{22} - 148985 x^{21} - 878198 x^{20} + 771582 x^{19} + 3033009 x^{18} - 2562602 x^{17} - 6690617 x^{16} + 5402217 x^{15} + 9167438 x^{14} - 7021358 x^{13} - 7422000 x^{12} + 5341306 x^{11} + 3295409 x^{10} - 2212210 x^{9} - 740486 x^{8} + 479104 x^{7} + 71252 x^{6} - 50085 x^{5} - 1394 x^{4} + 2108 x^{3} - 72 x^{2} - 24 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $30$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[30, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(189537114621750490998034780134822461022325002110684109=3^{15}\cdot 7^{25}\cdot 11^{24}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $59.69$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 7, 11$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(231=3\cdot 7\cdot 11\)
Dirichlet character group:    $\lbrace$$\chi_{231}(64,·)$, $\chi_{231}(1,·)$, $\chi_{231}(130,·)$, $\chi_{231}(67,·)$, $\chi_{231}(4,·)$, $\chi_{231}(5,·)$, $\chi_{231}(16,·)$, $\chi_{231}(146,·)$, $\chi_{231}(20,·)$, $\chi_{231}(214,·)$, $\chi_{231}(89,·)$, $\chi_{231}(152,·)$, $\chi_{231}(25,·)$, $\chi_{231}(26,·)$, $\chi_{231}(122,·)$, $\chi_{231}(80,·)$, $\chi_{231}(148,·)$, $\chi_{231}(163,·)$, $\chi_{231}(100,·)$, $\chi_{231}(37,·)$, $\chi_{231}(38,·)$, $\chi_{231}(104,·)$, $\chi_{231}(169,·)$, $\chi_{231}(47,·)$, $\chi_{231}(185,·)$, $\chi_{231}(58,·)$, $\chi_{231}(59,·)$, $\chi_{231}(188,·)$, $\chi_{231}(125,·)$, $\chi_{231}(190,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $\frac{1}{43} a^{24} + \frac{17}{43} a^{23} - \frac{19}{43} a^{22} + \frac{10}{43} a^{21} + \frac{5}{43} a^{20} - \frac{13}{43} a^{19} + \frac{5}{43} a^{18} - \frac{14}{43} a^{17} + \frac{11}{43} a^{16} - \frac{5}{43} a^{15} + \frac{14}{43} a^{14} - \frac{1}{43} a^{13} - \frac{5}{43} a^{12} - \frac{8}{43} a^{11} - \frac{17}{43} a^{10} - \frac{13}{43} a^{9} - \frac{4}{43} a^{8} - \frac{5}{43} a^{7} + \frac{12}{43} a^{6} - \frac{21}{43} a^{5} + \frac{17}{43} a^{4} + \frac{7}{43} a^{3} - \frac{3}{43} a + \frac{17}{43}$, $\frac{1}{43} a^{25} - \frac{7}{43} a^{23} - \frac{11}{43} a^{22} + \frac{7}{43} a^{21} - \frac{12}{43} a^{20} + \frac{11}{43} a^{19} - \frac{13}{43} a^{18} - \frac{9}{43} a^{17} - \frac{20}{43} a^{16} + \frac{13}{43} a^{15} + \frac{19}{43} a^{14} + \frac{12}{43} a^{13} - \frac{9}{43} a^{12} - \frac{10}{43} a^{11} + \frac{18}{43} a^{10} + \frac{2}{43} a^{9} + \frac{20}{43} a^{8} + \frac{11}{43} a^{7} - \frac{10}{43} a^{6} - \frac{13}{43} a^{5} + \frac{19}{43} a^{4} + \frac{10}{43} a^{3} - \frac{3}{43} a^{2} - \frac{18}{43} a + \frac{12}{43}$, $\frac{1}{43} a^{26} - \frac{21}{43} a^{23} + \frac{3}{43} a^{22} + \frac{15}{43} a^{21} + \frac{3}{43} a^{20} - \frac{18}{43} a^{19} - \frac{17}{43} a^{18} + \frac{11}{43} a^{17} + \frac{4}{43} a^{16} - \frac{16}{43} a^{15} - \frac{19}{43} a^{14} - \frac{16}{43} a^{13} - \frac{2}{43} a^{12} + \frac{5}{43} a^{11} + \frac{12}{43} a^{10} + \frac{15}{43} a^{9} - \frac{17}{43} a^{8} - \frac{2}{43} a^{7} - \frac{15}{43} a^{6} + \frac{1}{43} a^{5} + \frac{3}{43} a^{3} - \frac{18}{43} a^{2} - \frac{9}{43} a - \frac{10}{43}$, $\frac{1}{43} a^{27} + \frac{16}{43} a^{23} + \frac{3}{43} a^{22} - \frac{2}{43} a^{21} + \frac{1}{43} a^{20} + \frac{11}{43} a^{19} - \frac{13}{43} a^{18} + \frac{11}{43} a^{17} + \frac{5}{43} a^{15} + \frac{20}{43} a^{14} + \frac{20}{43} a^{13} - \frac{14}{43} a^{12} + \frac{16}{43} a^{11} + \frac{2}{43} a^{10} + \frac{11}{43} a^{9} + \frac{9}{43} a^{7} - \frac{5}{43} a^{6} - \frac{11}{43} a^{5} + \frac{16}{43} a^{4} - \frac{9}{43} a^{2} + \frac{13}{43} a + \frac{13}{43}$, $\frac{1}{43} a^{28} - \frac{11}{43} a^{23} + \frac{1}{43} a^{22} + \frac{13}{43} a^{21} + \frac{17}{43} a^{20} - \frac{20}{43} a^{19} + \frac{17}{43} a^{18} + \frac{9}{43} a^{17} + \frac{1}{43} a^{16} + \frac{14}{43} a^{15} + \frac{11}{43} a^{14} + \frac{2}{43} a^{13} + \frac{10}{43} a^{12} + \frac{1}{43} a^{11} - \frac{18}{43} a^{10} - \frac{7}{43} a^{9} - \frac{13}{43} a^{8} - \frac{11}{43} a^{7} + \frac{12}{43} a^{6} + \frac{8}{43} a^{5} - \frac{14}{43} a^{4} + \frac{8}{43} a^{3} + \frac{13}{43} a^{2} + \frac{18}{43} a - \frac{14}{43}$, $\frac{1}{142483128259185440034779578687195722757995403307190087060719} a^{29} + \frac{1457130403966900445135717330288808947600580238349911093427}{142483128259185440034779578687195722757995403307190087060719} a^{28} - \frac{1036142612981511805310554997616339694403241231520775046690}{142483128259185440034779578687195722757995403307190087060719} a^{27} + \frac{675540698171458793216607848599696566032684208817600775366}{142483128259185440034779578687195722757995403307190087060719} a^{26} - \frac{12454333472252619508663380139483656651041587097106843880}{142483128259185440034779578687195722757995403307190087060719} a^{25} + \frac{681086964552741032291090859526721390529311324855595612238}{142483128259185440034779578687195722757995403307190087060719} a^{24} - \frac{32744596202058599825829801648159367479809420146705124372452}{142483128259185440034779578687195722757995403307190087060719} a^{23} + \frac{24766129111276535687404428751556822618346162255020910907766}{142483128259185440034779578687195722757995403307190087060719} a^{22} + \frac{44335768394326033312783993695904663102502137294795462198629}{142483128259185440034779578687195722757995403307190087060719} a^{21} - \frac{70672792843314587048572119322024388428430055433866755154137}{142483128259185440034779578687195722757995403307190087060719} a^{20} - \frac{51012521301812564668676814258380194010684918256877836976845}{142483128259185440034779578687195722757995403307190087060719} a^{19} - \frac{28498415409210075573866529689792429985658771402655893879031}{142483128259185440034779578687195722757995403307190087060719} a^{18} + \frac{35979483307708909807840950331064341474733979035635305565847}{142483128259185440034779578687195722757995403307190087060719} a^{17} + \frac{12121506158308198185465680558295204956740638859384907346914}{142483128259185440034779578687195722757995403307190087060719} a^{16} + \frac{41567964207545875093375800275744800074726463564386384981395}{142483128259185440034779578687195722757995403307190087060719} a^{15} + \frac{14896949214977884423903895745756743949398464424465769178069}{142483128259185440034779578687195722757995403307190087060719} a^{14} - \frac{521840706286988477933662383335321544365487971950377914}{1461650252451097547571112100688295388414105346756702199} a^{13} - \frac{70372240851746789162881864437757827648317736461533405860660}{142483128259185440034779578687195722757995403307190087060719} a^{12} + \frac{667598049971030569418221154403146802343624959173152503098}{142483128259185440034779578687195722757995403307190087060719} a^{11} + \frac{33426863467438735126875735395951236823909901803814797326088}{142483128259185440034779578687195722757995403307190087060719} a^{10} - \frac{26143559611330217181702655430458030085114329989249618383181}{142483128259185440034779578687195722757995403307190087060719} a^{9} - \frac{45501915406875634068504543332056221096294189758429830677195}{142483128259185440034779578687195722757995403307190087060719} a^{8} - \frac{56032234376064270349079841902730919702401153549381854224282}{142483128259185440034779578687195722757995403307190087060719} a^{7} + \frac{52619393550868653187881094128058688620611131321040700374375}{142483128259185440034779578687195722757995403307190087060719} a^{6} + \frac{62761863285063550726889312856659762153162284734505595768537}{142483128259185440034779578687195722757995403307190087060719} a^{5} + \frac{34352228403997917533346784390445398837335806158542627453657}{142483128259185440034779578687195722757995403307190087060719} a^{4} + \frac{54248304953772207819030135629317058667011011859009259850606}{142483128259185440034779578687195722757995403307190087060719} a^{3} - \frac{14474423132980454065977739602272560761544849301561048495166}{142483128259185440034779578687195722757995403307190087060719} a^{2} - \frac{66424312037719503897395122272059594830356008502001532605837}{142483128259185440034779578687195722757995403307190087060719} a + \frac{53404676729991894691340975608096194874622931400376614663482}{142483128259185440034779578687195722757995403307190087060719}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $29$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 162927449513789120 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{30}$ (as 30T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 30
The 30 conjugacy class representatives for $C_{30}$
Character table for $C_{30}$ is not computed

Intermediate fields

\(\Q(\sqrt{21}) \), \(\Q(\zeta_{7})^+\), \(\Q(\zeta_{11})^+\), \(\Q(\zeta_{21})^+\), 10.10.875463320250981.1, 15.15.886528337182930278529.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $30$ R $15^{2}$ R R ${\href{/LocalNumberField/13.10.0.1}{10} }^{3}$ $15^{2}$ $30$ ${\href{/LocalNumberField/23.6.0.1}{6} }^{5}$ ${\href{/LocalNumberField/29.10.0.1}{10} }^{3}$ $30$ $15^{2}$ ${\href{/LocalNumberField/41.5.0.1}{5} }^{6}$ ${\href{/LocalNumberField/43.1.0.1}{1} }^{30}$ $15^{2}$ $30$ $15^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
3Data not computed
7Data not computed
11Data not computed