Normalized defining polynomial
\( x^{30} - x^{29} - 43 x^{28} + 38 x^{27} + 781 x^{26} - 596 x^{25} - 7867 x^{24} + 5047 x^{23} + 48698 x^{22} - 25508 x^{21} - 194877 x^{20} + 80952 x^{19} + 518752 x^{18} - 166292 x^{17} - 933247 x^{16} + 224622 x^{15} + 1140241 x^{14} - 199706 x^{13} - 939544 x^{12} + 114974 x^{11} + 510922 x^{10} - 41272 x^{9} - 175815 x^{8} + 8730 x^{7} + 35532 x^{6} - 1092 x^{5} - 3682 x^{4} + 112 x^{3} + 148 x^{2} - 8 x - 1 \)
Invariants
| Degree: | $30$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[30, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(17485477327500765872904889567178150559785186767578125=5^{15}\cdot 31^{28}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $55.13$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(155=5\cdot 31\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{155}(64,·)$, $\chi_{155}(1,·)$, $\chi_{155}(66,·)$, $\chi_{155}(131,·)$, $\chi_{155}(4,·)$, $\chi_{155}(69,·)$, $\chi_{155}(134,·)$, $\chi_{155}(129,·)$, $\chi_{155}(9,·)$, $\chi_{155}(76,·)$, $\chi_{155}(14,·)$, $\chi_{155}(16,·)$, $\chi_{155}(81,·)$, $\chi_{155}(19,·)$, $\chi_{155}(149,·)$, $\chi_{155}(94,·)$, $\chi_{155}(144,·)$, $\chi_{155}(36,·)$, $\chi_{155}(101,·)$, $\chi_{155}(39,·)$, $\chi_{155}(41,·)$, $\chi_{155}(71,·)$, $\chi_{155}(109,·)$, $\chi_{155}(111,·)$, $\chi_{155}(49,·)$, $\chi_{155}(51,·)$, $\chi_{155}(56,·)$, $\chi_{155}(121,·)$, $\chi_{155}(59,·)$, $\chi_{155}(126,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $\frac{1}{61} a^{27} + \frac{3}{61} a^{26} - \frac{23}{61} a^{25} + \frac{23}{61} a^{24} - \frac{6}{61} a^{23} - \frac{8}{61} a^{22} - \frac{18}{61} a^{21} + \frac{18}{61} a^{20} + \frac{12}{61} a^{19} + \frac{21}{61} a^{18} - \frac{7}{61} a^{17} - \frac{12}{61} a^{16} - \frac{20}{61} a^{15} - \frac{4}{61} a^{14} - \frac{27}{61} a^{13} - \frac{21}{61} a^{12} + \frac{5}{61} a^{11} + \frac{15}{61} a^{10} + \frac{2}{61} a^{9} + \frac{16}{61} a^{8} + \frac{7}{61} a^{7} - \frac{18}{61} a^{6} + \frac{26}{61} a^{5} - \frac{28}{61} a^{4} + \frac{26}{61} a^{3} - \frac{17}{61} a^{2} - \frac{24}{61} a - \frac{23}{61}$, $\frac{1}{61} a^{28} + \frac{29}{61} a^{26} - \frac{30}{61} a^{25} - \frac{14}{61} a^{24} + \frac{10}{61} a^{23} + \frac{6}{61} a^{22} + \frac{11}{61} a^{21} + \frac{19}{61} a^{20} - \frac{15}{61} a^{19} - \frac{9}{61} a^{18} + \frac{9}{61} a^{17} + \frac{16}{61} a^{16} - \frac{5}{61} a^{15} - \frac{15}{61} a^{14} - \frac{1}{61} a^{13} + \frac{7}{61} a^{12} + \frac{18}{61} a^{10} + \frac{10}{61} a^{9} + \frac{20}{61} a^{8} + \frac{22}{61} a^{7} + \frac{19}{61} a^{6} + \frac{16}{61} a^{5} - \frac{12}{61} a^{4} + \frac{27}{61} a^{3} + \frac{27}{61} a^{2} - \frac{12}{61} a + \frac{8}{61}$, $\frac{1}{2115390618211016903709730225178783779} a^{29} - \frac{3914262553796229550043625838232999}{2115390618211016903709730225178783779} a^{28} + \frac{15566156993351725186920753418952928}{2115390618211016903709730225178783779} a^{27} - \frac{912460526940827941093716855000582118}{2115390618211016903709730225178783779} a^{26} - \frac{37166894967273828363785758253769569}{2115390618211016903709730225178783779} a^{25} - \frac{137251088615936538764383287477502236}{2115390618211016903709730225178783779} a^{24} + \frac{610756932690000571996235671633328654}{2115390618211016903709730225178783779} a^{23} - \frac{595876227819456012988960489243886989}{2115390618211016903709730225178783779} a^{22} - \frac{254014670709973643542797202298356001}{2115390618211016903709730225178783779} a^{21} + \frac{323139794954024563351727434178859496}{2115390618211016903709730225178783779} a^{20} - \frac{796591076070051754790417924535090360}{2115390618211016903709730225178783779} a^{19} - \frac{299608568478163929947632976925983603}{2115390618211016903709730225178783779} a^{18} + \frac{181435910439287600168047888899456503}{2115390618211016903709730225178783779} a^{17} - \frac{953925232744836993653524269888682236}{2115390618211016903709730225178783779} a^{16} + \frac{483120491973077363629537239407551847}{2115390618211016903709730225178783779} a^{15} - \frac{142768592371530831724507553160530136}{2115390618211016903709730225178783779} a^{14} + \frac{125077344938463234770308728785972797}{2115390618211016903709730225178783779} a^{13} + \frac{757477035320596550285199883029555435}{2115390618211016903709730225178783779} a^{12} + \frac{620016483901452179935669336347124230}{2115390618211016903709730225178783779} a^{11} - \frac{946106994638078726400775394093384378}{2115390618211016903709730225178783779} a^{10} + \frac{271963025026299094036865022193425854}{2115390618211016903709730225178783779} a^{9} - \frac{782365499971169656755918094600939317}{2115390618211016903709730225178783779} a^{8} - \frac{412127257412285521228411975584540736}{2115390618211016903709730225178783779} a^{7} + \frac{721524124483155870890769650172857519}{2115390618211016903709730225178783779} a^{6} + \frac{1031197464034190528322021885208302501}{2115390618211016903709730225178783779} a^{5} + \frac{278254308699982268350503993380858038}{2115390618211016903709730225178783779} a^{4} - \frac{479990593183451080422874155901123699}{2115390618211016903709730225178783779} a^{3} - \frac{3176727738794442955450571061151495}{34678534724770768913274265986537439} a^{2} + \frac{942885208220860925047650030959937234}{2115390618211016903709730225178783779} a + \frac{815797806870753123022079888263044792}{2115390618211016903709730225178783779}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $29$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 43214123905561144 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 30 |
| The 30 conjugacy class representatives for $C_{30}$ |
| Character table for $C_{30}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 3.3.961.1, 5.5.923521.1, 6.6.115440125.1, 10.10.2665284492003125.1, \(\Q(\zeta_{31})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{3}$ | $30$ | R | $30$ | $15^{2}$ | $30$ | $30$ | $15^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{3}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{6}$ | R | ${\href{/LocalNumberField/37.6.0.1}{6} }^{5}$ | $15^{2}$ | $30$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{3}$ | $30$ | $15^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $31$ | 31.15.14.1 | $x^{15} - 31$ | $15$ | $1$ | $14$ | $C_{15}$ | $[\ ]_{15}$ |
| 31.15.14.1 | $x^{15} - 31$ | $15$ | $1$ | $14$ | $C_{15}$ | $[\ ]_{15}$ |