Properties

Label 30.30.1711404060...1904.1
Degree $30$
Signature $[30, 0]$
Discriminant $2^{30}\cdot 3^{40}\cdot 11^{27}$
Root discriminant $74.89$
Ramified primes $2, 3, 11$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_{30}$ (as 30T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 30, -948, -510, 76932, -354570, -9685, 2952402, -3940323, -7303108, 15397623, 7466562, -26043061, -2607870, 24638247, -964952, -14466885, 1180242, 5535342, -442344, -1403721, 84622, 234885, -8784, -25382, 468, 1692, -10, -63, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^30 - 63*x^28 - 10*x^27 + 1692*x^26 + 468*x^25 - 25382*x^24 - 8784*x^23 + 234885*x^22 + 84622*x^21 - 1403721*x^20 - 442344*x^19 + 5535342*x^18 + 1180242*x^17 - 14466885*x^16 - 964952*x^15 + 24638247*x^14 - 2607870*x^13 - 26043061*x^12 + 7466562*x^11 + 15397623*x^10 - 7303108*x^9 - 3940323*x^8 + 2952402*x^7 - 9685*x^6 - 354570*x^5 + 76932*x^4 - 510*x^3 - 948*x^2 + 30*x + 1)
 
gp: K = bnfinit(x^30 - 63*x^28 - 10*x^27 + 1692*x^26 + 468*x^25 - 25382*x^24 - 8784*x^23 + 234885*x^22 + 84622*x^21 - 1403721*x^20 - 442344*x^19 + 5535342*x^18 + 1180242*x^17 - 14466885*x^16 - 964952*x^15 + 24638247*x^14 - 2607870*x^13 - 26043061*x^12 + 7466562*x^11 + 15397623*x^10 - 7303108*x^9 - 3940323*x^8 + 2952402*x^7 - 9685*x^6 - 354570*x^5 + 76932*x^4 - 510*x^3 - 948*x^2 + 30*x + 1, 1)
 

Normalized defining polynomial

\( x^{30} - 63 x^{28} - 10 x^{27} + 1692 x^{26} + 468 x^{25} - 25382 x^{24} - 8784 x^{23} + 234885 x^{22} + 84622 x^{21} - 1403721 x^{20} - 442344 x^{19} + 5535342 x^{18} + 1180242 x^{17} - 14466885 x^{16} - 964952 x^{15} + 24638247 x^{14} - 2607870 x^{13} - 26043061 x^{12} + 7466562 x^{11} + 15397623 x^{10} - 7303108 x^{9} - 3940323 x^{8} + 2952402 x^{7} - 9685 x^{6} - 354570 x^{5} + 76932 x^{4} - 510 x^{3} - 948 x^{2} + 30 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $30$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[30, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(171140406014793353454699497635681610393336745825511931904=2^{30}\cdot 3^{40}\cdot 11^{27}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $74.89$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 11$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(396=2^{2}\cdot 3^{2}\cdot 11\)
Dirichlet character group:    $\lbrace$$\chi_{396}(1,·)$, $\chi_{396}(343,·)$, $\chi_{396}(259,·)$, $\chi_{396}(133,·)$, $\chi_{396}(211,·)$, $\chi_{396}(7,·)$, $\chi_{396}(265,·)$, $\chi_{396}(79,·)$, $\chi_{396}(139,·)$, $\chi_{396}(271,·)$, $\chi_{396}(19,·)$, $\chi_{396}(151,·)$, $\chi_{396}(25,·)$, $\chi_{396}(283,·)$, $\chi_{396}(157,·)$, $\chi_{396}(229,·)$, $\chi_{396}(289,·)$, $\chi_{396}(391,·)$, $\chi_{396}(37,·)$, $\chi_{396}(97,·)$, $\chi_{396}(169,·)$, $\chi_{396}(43,·)$, $\chi_{396}(301,·)$, $\chi_{396}(175,·)$, $\chi_{396}(49,·)$, $\chi_{396}(307,·)$, $\chi_{396}(181,·)$, $\chi_{396}(361,·)$, $\chi_{396}(313,·)$, $\chi_{396}(127,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $\frac{1}{136040983291270722031800194693053} a^{28} + \frac{13352133249755354312976977208782}{136040983291270722031800194693053} a^{27} - \frac{50108357925279327923559295562259}{136040983291270722031800194693053} a^{26} + \frac{19198752679032616934700230166828}{136040983291270722031800194693053} a^{25} - \frac{25739901166300404357243242472498}{136040983291270722031800194693053} a^{24} - \frac{24571288619020782417138590447426}{136040983291270722031800194693053} a^{23} + \frac{47618199222085293992230259236683}{136040983291270722031800194693053} a^{22} - \frac{20957581947116126810757886584484}{136040983291270722031800194693053} a^{21} + \frac{49786741899146855546100896241168}{136040983291270722031800194693053} a^{20} - \frac{25094462659899835258060850715836}{136040983291270722031800194693053} a^{19} + \frac{10298656317885229839600073006319}{136040983291270722031800194693053} a^{18} - \frac{55212996305862984863372489595278}{136040983291270722031800194693053} a^{17} - \frac{17717223606670091402518305884295}{136040983291270722031800194693053} a^{16} + \frac{1708393726805872278930550514252}{136040983291270722031800194693053} a^{15} + \frac{2942141064213211080375236209450}{136040983291270722031800194693053} a^{14} - \frac{34956600131814288081453662433402}{136040983291270722031800194693053} a^{13} - \frac{51839858665836212886099844103013}{136040983291270722031800194693053} a^{12} + \frac{24741325740430457878751700031507}{136040983291270722031800194693053} a^{11} + \frac{50571231008827931123931137641677}{136040983291270722031800194693053} a^{10} - \frac{62396953174085277891893472423082}{136040983291270722031800194693053} a^{9} - \frac{47261834192324042920451520055222}{136040983291270722031800194693053} a^{8} + \frac{26690303965397336891346505556984}{136040983291270722031800194693053} a^{7} - \frac{15387800587357908241303431427464}{136040983291270722031800194693053} a^{6} + \frac{37459232411885402270777722202118}{136040983291270722031800194693053} a^{5} - \frac{65769981879383633224319449216769}{136040983291270722031800194693053} a^{4} - \frac{50426591751535071340975027481617}{136040983291270722031800194693053} a^{3} + \frac{42766542904884752777977290452281}{136040983291270722031800194693053} a^{2} - \frac{5142601089594776228952693950384}{136040983291270722031800194693053} a + \frac{61723574152456106378880316404489}{136040983291270722031800194693053}$, $\frac{1}{34943952092317670515686824733723249128207} a^{29} - \frac{51734382}{34943952092317670515686824733723249128207} a^{28} + \frac{3621223398112099929169272445072046111100}{34943952092317670515686824733723249128207} a^{27} + \frac{3915597821489966785035689176010198123023}{34943952092317670515686824733723249128207} a^{26} - \frac{17464155428623819346733176128132798719673}{34943952092317670515686824733723249128207} a^{25} - \frac{12674103775163226689548296987039935066802}{34943952092317670515686824733723249128207} a^{24} + \frac{15778085207068770157589568884181215077904}{34943952092317670515686824733723249128207} a^{23} - \frac{12336900658869162295174171846677944588352}{34943952092317670515686824733723249128207} a^{22} + \frac{13822765750017910442484775245159089668922}{34943952092317670515686824733723249128207} a^{21} + \frac{14656293433654688263989571509544149646750}{34943952092317670515686824733723249128207} a^{20} + \frac{1914605828853969890803361337616781627187}{34943952092317670515686824733723249128207} a^{19} + \frac{8429331444972431438205615674011840193673}{34943952092317670515686824733723249128207} a^{18} - \frac{14129267707182033716578446622130053170628}{34943952092317670515686824733723249128207} a^{17} + \frac{2162905039682439380392363912101581052133}{34943952092317670515686824733723249128207} a^{16} - \frac{5199090109014118503628329511294579063127}{34943952092317670515686824733723249128207} a^{15} + \frac{14725797908622500653898504664143565002696}{34943952092317670515686824733723249128207} a^{14} + \frac{1565052774005741233541921180662750376842}{34943952092317670515686824733723249128207} a^{13} + \frac{2975624315275058994813607211888107795728}{34943952092317670515686824733723249128207} a^{12} + \frac{1808370796272047101064289279234921332344}{34943952092317670515686824733723249128207} a^{11} + \frac{2269772376137347987412540356966516912705}{34943952092317670515686824733723249128207} a^{10} + \frac{6313879497574864880040807127583217189913}{34943952092317670515686824733723249128207} a^{9} - \frac{12468298349396690037150634234086549207099}{34943952092317670515686824733723249128207} a^{8} + \frac{14786513898480175951994500734208202459600}{34943952092317670515686824733723249128207} a^{7} + \frac{10116774160763847781845446585438854197849}{34943952092317670515686824733723249128207} a^{6} - \frac{258695316491024015363123731679581477319}{34943952092317670515686824733723249128207} a^{5} - \frac{5970561109449001736931566017123194335503}{34943952092317670515686824733723249128207} a^{4} - \frac{6588261910277552528950319729900680218496}{34943952092317670515686824733723249128207} a^{3} - \frac{15465177452357091412041871442741223272188}{34943952092317670515686824733723249128207} a^{2} + \frac{4619644062875623077106140695766859750287}{34943952092317670515686824733723249128207} a - \frac{6658876407634580482335986139840246889551}{34943952092317670515686824733723249128207}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $29$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 3435292739576321000 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{30}$ (as 30T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 30
The 30 conjugacy class representatives for $C_{30}$
Character table for $C_{30}$ is not computed

Intermediate fields

\(\Q(\sqrt{11}) \), \(\Q(\zeta_{9})^+\), \(\Q(\zeta_{11})^+\), 6.6.558892224.1, \(\Q(\zeta_{44})^+\), 15.15.10943023107606534329121.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R $15^{2}$ $15^{2}$ R $30$ ${\href{/LocalNumberField/17.10.0.1}{10} }^{3}$ ${\href{/LocalNumberField/19.5.0.1}{5} }^{6}$ ${\href{/LocalNumberField/23.6.0.1}{6} }^{5}$ $30$ $30$ ${\href{/LocalNumberField/37.5.0.1}{5} }^{6}$ $30$ ${\href{/LocalNumberField/43.3.0.1}{3} }^{10}$ $30$ ${\href{/LocalNumberField/53.5.0.1}{5} }^{6}$ $30$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
3Data not computed
11Data not computed