# SageMath code for working with number field 30.30.15010049358097810645468215169836895080663686428828497.1 # (Note that not all these functions may be available, and some may take a long time to execute.) # Define the number field: x = polygen(QQ); K. = NumberField(x^30 - x^29 - 52*x^28 + 51*x^27 + 1142*x^26 - 1092*x^25 - 13898*x^24 + 12856*x^23 + 103478*x^22 - 91664*x^21 - 491678*x^20 + 412467*x^19 + 1512708*x^18 - 1191563*x^17 - 3007832*x^16 + 2225799*x^15 + 3819257*x^14 - 2692049*x^13 - 3042474*x^12 + 2079355*x^11 + 1471733*x^10 - 992749*x^9 - 403229*x^8 + 274849*x^7 + 52970*x^6 - 38754*x^5 - 1790*x^4 + 2057*x^3 - 72*x^2 - 24*x + 1) # Defining polynomial: K.defining_polynomial() # Degree over Q: K.degree() # Signature: K.signature() # Discriminant: K.disc() # Ramified primes: K.disc().support() # Integral basis: K.integral_basis() # Class group: K.class_group().invariants() # Unit group: UK = K.unit_group() # Unit rank: UK.rank() # Generator for roots of unity: UK.torsion_generator() # Fundamental units: UK.fundamental_units() # Regulator: K.regulator() # Galois group: K.galois_group(type='pari') # Frobenius cycle types: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]