Normalized defining polynomial
\( x^{30} - 55 x^{28} + 1298 x^{26} - 17325 x^{24} + 145222 x^{22} - 803154 x^{20} + 3000195 x^{18} - 7637278 x^{16} + 13252283 x^{14} - 15598836 x^{12} + 12328085 x^{10} - 6411427 x^{8} + 2110966 x^{6} - 408617 x^{4} + 39930 x^{2} - 1331 \)
Invariants
| Degree: | $30$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[30, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1123215710861738275456915198522447563874269573052104704=2^{30}\cdot 7^{20}\cdot 11^{27}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $63.34$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(308=2^{2}\cdot 7\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{308}(1,·)$, $\chi_{308}(107,·)$, $\chi_{308}(263,·)$, $\chi_{308}(9,·)$, $\chi_{308}(183,·)$, $\chi_{308}(239,·)$, $\chi_{308}(141,·)$, $\chi_{308}(79,·)$, $\chi_{308}(81,·)$, $\chi_{308}(211,·)$, $\chi_{308}(151,·)$, $\chi_{308}(225,·)$, $\chi_{308}(25,·)$, $\chi_{308}(219,·)$, $\chi_{308}(93,·)$, $\chi_{308}(95,·)$, $\chi_{308}(289,·)$, $\chi_{308}(113,·)$, $\chi_{308}(37,·)$, $\chi_{308}(39,·)$, $\chi_{308}(169,·)$, $\chi_{308}(43,·)$, $\chi_{308}(303,·)$, $\chi_{308}(177,·)$, $\chi_{308}(221,·)$, $\chi_{308}(51,·)$, $\chi_{308}(53,·)$, $\chi_{308}(137,·)$, $\chi_{308}(123,·)$, $\chi_{308}(127,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{11} a^{10}$, $\frac{1}{11} a^{11}$, $\frac{1}{11} a^{12}$, $\frac{1}{11} a^{13}$, $\frac{1}{11} a^{14}$, $\frac{1}{11} a^{15}$, $\frac{1}{11} a^{16}$, $\frac{1}{11} a^{17}$, $\frac{1}{11} a^{18}$, $\frac{1}{11} a^{19}$, $\frac{1}{121} a^{20}$, $\frac{1}{121} a^{21}$, $\frac{1}{121} a^{22}$, $\frac{1}{121} a^{23}$, $\frac{1}{5203} a^{24} + \frac{1}{473} a^{22} + \frac{9}{5203} a^{20} + \frac{1}{43} a^{18} + \frac{13}{473} a^{16} - \frac{5}{473} a^{14} + \frac{6}{473} a^{12} - \frac{5}{473} a^{10} + \frac{11}{43} a^{8} - \frac{1}{43} a^{6} - \frac{1}{43} a^{4} + \frac{7}{43} a^{2} - \frac{2}{43}$, $\frac{1}{5203} a^{25} + \frac{1}{473} a^{23} + \frac{9}{5203} a^{21} + \frac{1}{43} a^{19} + \frac{13}{473} a^{17} - \frac{5}{473} a^{15} + \frac{6}{473} a^{13} - \frac{5}{473} a^{11} + \frac{11}{43} a^{9} - \frac{1}{43} a^{7} - \frac{1}{43} a^{5} + \frac{7}{43} a^{3} - \frac{2}{43} a$, $\frac{1}{5203} a^{26} + \frac{17}{5203} a^{22} - \frac{21}{5203} a^{20} + \frac{21}{473} a^{18} - \frac{19}{473} a^{16} + \frac{18}{473} a^{14} + \frac{15}{473} a^{12} + \frac{4}{473} a^{10} + \frac{7}{43} a^{8} + \frac{10}{43} a^{6} + \frac{18}{43} a^{4} + \frac{7}{43} a^{2} - \frac{21}{43}$, $\frac{1}{5203} a^{27} + \frac{17}{5203} a^{23} - \frac{21}{5203} a^{21} + \frac{21}{473} a^{19} - \frac{19}{473} a^{17} + \frac{18}{473} a^{15} + \frac{15}{473} a^{13} + \frac{4}{473} a^{11} + \frac{7}{43} a^{9} + \frac{10}{43} a^{7} + \frac{18}{43} a^{5} + \frac{7}{43} a^{3} - \frac{21}{43} a$, $\frac{1}{1779433424894323} a^{28} + \frac{66936678742}{1779433424894323} a^{26} + \frac{41218577492}{1779433424894323} a^{24} + \frac{519987916271}{1779433424894323} a^{22} + \frac{1800644084939}{1779433424894323} a^{20} - \frac{323809725138}{161766674990393} a^{18} + \frac{5943010899553}{161766674990393} a^{16} + \frac{5851142472044}{161766674990393} a^{14} + \frac{1055330608364}{161766674990393} a^{12} + \frac{3864204640248}{161766674990393} a^{10} + \frac{2496246443913}{14706061362763} a^{8} + \frac{211319476237}{14706061362763} a^{6} - \frac{7004197987566}{14706061362763} a^{4} - \frac{4292222891592}{14706061362763} a^{2} + \frac{729743559581}{14706061362763}$, $\frac{1}{1779433424894323} a^{29} + \frac{66936678742}{1779433424894323} a^{27} + \frac{41218577492}{1779433424894323} a^{25} + \frac{519987916271}{1779433424894323} a^{23} + \frac{1800644084939}{1779433424894323} a^{21} - \frac{323809725138}{161766674990393} a^{19} + \frac{5943010899553}{161766674990393} a^{17} + \frac{5851142472044}{161766674990393} a^{15} + \frac{1055330608364}{161766674990393} a^{13} + \frac{3864204640248}{161766674990393} a^{11} + \frac{2496246443913}{14706061362763} a^{9} + \frac{211319476237}{14706061362763} a^{7} - \frac{7004197987566}{14706061362763} a^{5} - \frac{4292222891592}{14706061362763} a^{3} + \frac{729743559581}{14706061362763} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $29$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 399416357360943940 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 30 |
| The 30 conjugacy class representatives for $C_{30}$ |
| Character table for $C_{30}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{11}) \), \(\Q(\zeta_{7})^+\), \(\Q(\zeta_{11})^+\), 6.6.204526784.1, \(\Q(\zeta_{44})^+\), 15.15.886528337182930278529.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $30$ | $15^{2}$ | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{3}$ | $30$ | $15^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{5}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{3}$ | $30$ | $15^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{3}$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{30}$ | $30$ | $15^{2}$ | $30$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $7$ | 7.15.10.1 | $x^{15} + 4116 x^{6} - 2401 x^{3} + 1075648$ | $3$ | $5$ | $10$ | $C_{15}$ | $[\ ]_{3}^{5}$ |
| 7.15.10.1 | $x^{15} + 4116 x^{6} - 2401 x^{3} + 1075648$ | $3$ | $5$ | $10$ | $C_{15}$ | $[\ ]_{3}^{5}$ | |
| 11 | Data not computed | ||||||