Normalized defining polynomial
\(x^{30} - 8 x^{29} + 43 x^{28} - 163 x^{27} + 446 x^{26} - 385 x^{25} - 2817 x^{24} + 21864 x^{23} - 95826 x^{22} + 323313 x^{21} - 894891 x^{20} + 2178948 x^{19} - 4695543 x^{18} + 9008829 x^{17} - 15016794 x^{16} + 20604987 x^{15} - 18291717 x^{14} - 5218266 x^{13} + 65252417 x^{12} - 159581317 x^{11} + 242005763 x^{10} - 224361122 x^{9} + 47652991 x^{8} + 233622619 x^{7} - 454603911 x^{6} + 464765022 x^{5} - 306287199 x^{4} + 111399003 x^{3} - 14270364 x^{2} - 456489 x - 204363\)
Invariants
Degree: | $30$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[2, 14]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(86618284683850782149418819696007456920853807515055533\)\(\medspace = 3^{14}\cdot 1213^{15}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $58.15$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $3, 1213$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $2$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3}$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{2}$, $\frac{1}{9} a^{9} - \frac{1}{3} a^{5} - \frac{4}{9} a^{3} - \frac{1}{3} a$, $\frac{1}{9} a^{10} - \frac{1}{9} a^{4}$, $\frac{1}{9} a^{11} - \frac{1}{9} a^{5}$, $\frac{1}{9} a^{12} - \frac{1}{9} a^{6}$, $\frac{1}{9} a^{13} - \frac{1}{9} a^{7}$, $\frac{1}{9} a^{14} - \frac{1}{9} a^{8}$, $\frac{1}{27} a^{15} + \frac{1}{27} a^{13} + \frac{1}{27} a^{11} - \frac{1}{27} a^{9} - \frac{1}{27} a^{7} + \frac{8}{27} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{81} a^{16} - \frac{1}{81} a^{15} + \frac{1}{81} a^{14} + \frac{2}{81} a^{13} + \frac{1}{81} a^{12} + \frac{2}{81} a^{11} - \frac{1}{81} a^{10} + \frac{4}{81} a^{9} + \frac{8}{81} a^{8} - \frac{2}{81} a^{7} - \frac{10}{81} a^{6} - \frac{20}{81} a^{5} - \frac{1}{9} a^{4} - \frac{7}{27} a^{3} - \frac{2}{9} a^{2} - \frac{2}{9} a$, $\frac{1}{81} a^{17} + \frac{1}{27} a^{14} + \frac{1}{27} a^{13} + \frac{1}{27} a^{12} + \frac{1}{81} a^{11} + \frac{1}{27} a^{10} + \frac{1}{27} a^{9} + \frac{2}{27} a^{8} - \frac{4}{27} a^{7} - \frac{1}{27} a^{6} - \frac{2}{81} a^{5} - \frac{1}{27} a^{4} - \frac{1}{27} a^{3} - \frac{1}{9} a^{2} + \frac{1}{9} a$, $\frac{1}{81} a^{18} + \frac{1}{27} a^{14} + \frac{1}{81} a^{12} + \frac{1}{27} a^{10} - \frac{4}{27} a^{8} - \frac{2}{81} a^{6} - \frac{1}{27} a^{4} + \frac{1}{9} a^{2}$, $\frac{1}{81} a^{19} - \frac{2}{81} a^{13} + \frac{1}{81} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{81} a^{20} - \frac{2}{81} a^{14} + \frac{1}{81} a^{8}$, $\frac{1}{243} a^{21} - \frac{1}{243} a^{19} - \frac{2}{243} a^{15} + \frac{1}{27} a^{14} + \frac{2}{243} a^{13} - \frac{1}{27} a^{12} + \frac{1}{243} a^{9} - \frac{1}{27} a^{8} + \frac{26}{243} a^{7} + \frac{1}{27} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{3} - \frac{4}{9} a$, $\frac{1}{243} a^{22} - \frac{1}{243} a^{20} + \frac{1}{243} a^{16} - \frac{1}{81} a^{15} + \frac{5}{243} a^{14} - \frac{4}{81} a^{13} + \frac{1}{81} a^{12} - \frac{1}{81} a^{11} - \frac{2}{243} a^{10} + \frac{4}{81} a^{9} - \frac{31}{243} a^{8} + \frac{4}{81} a^{7} - \frac{10}{81} a^{6} + \frac{37}{81} a^{5} - \frac{1}{9} a^{4} + \frac{11}{27} a^{3} + \frac{4}{9} a$, $\frac{1}{729} a^{23} + \frac{1}{729} a^{22} - \frac{1}{729} a^{20} - \frac{4}{729} a^{19} + \frac{4}{729} a^{17} + \frac{1}{729} a^{16} - \frac{1}{243} a^{15} - \frac{13}{729} a^{14} - \frac{40}{729} a^{13} + \frac{1}{243} a^{12} - \frac{23}{729} a^{11} + \frac{16}{729} a^{10} + \frac{10}{243} a^{9} + \frac{41}{729} a^{8} - \frac{64}{729} a^{7} + \frac{17}{243} a^{6} + \frac{23}{81} a^{5} + \frac{4}{81} a^{4} - \frac{4}{9} a^{3} - \frac{8}{27} a^{2} + \frac{2}{27} a + \frac{1}{3}$, $\frac{1}{2187} a^{24} - \frac{1}{2187} a^{22} - \frac{1}{2187} a^{21} - \frac{1}{729} a^{20} + \frac{4}{2187} a^{19} + \frac{13}{2187} a^{18} + \frac{2}{729} a^{17} - \frac{13}{2187} a^{16} + \frac{26}{2187} a^{15} + \frac{11}{243} a^{14} - \frac{83}{2187} a^{13} + \frac{1}{2187} a^{12} - \frac{8}{729} a^{11} - \frac{85}{2187} a^{10} + \frac{56}{2187} a^{9} - \frac{23}{729} a^{8} + \frac{160}{2187} a^{7} - \frac{14}{729} a^{6} + \frac{86}{243} a^{5} + \frac{35}{243} a^{4} - \frac{20}{81} a^{3} - \frac{29}{81} a^{2} - \frac{11}{81} a + \frac{2}{9}$, $\frac{1}{2187} a^{25} - \frac{1}{2187} a^{23} - \frac{1}{2187} a^{22} - \frac{1}{729} a^{21} + \frac{4}{2187} a^{20} + \frac{13}{2187} a^{19} + \frac{2}{729} a^{18} - \frac{13}{2187} a^{17} - \frac{1}{2187} a^{16} - \frac{4}{243} a^{15} - \frac{110}{2187} a^{14} + \frac{28}{2187} a^{13} - \frac{17}{729} a^{12} - \frac{58}{2187} a^{11} + \frac{83}{2187} a^{10} - \frac{5}{729} a^{9} - \frac{56}{2187} a^{8} - \frac{23}{729} a^{7} + \frac{35}{243} a^{6} - \frac{76}{243} a^{5} - \frac{38}{81} a^{4} + \frac{19}{81} a^{3} - \frac{20}{81} a^{2} - \frac{2}{9} a$, $\frac{1}{2187} a^{26} - \frac{1}{2187} a^{23} - \frac{4}{2187} a^{22} + \frac{1}{729} a^{21} + \frac{10}{2187} a^{20} + \frac{10}{2187} a^{19} + \frac{5}{2187} a^{17} + \frac{5}{2187} a^{16} + \frac{8}{729} a^{15} - \frac{62}{2187} a^{14} - \frac{107}{2187} a^{13} - \frac{1}{729} a^{12} + \frac{86}{2187} a^{11} + \frac{89}{2187} a^{10} + \frac{2}{81} a^{9} - \frac{64}{729} a^{8} - \frac{281}{2187} a^{7} + \frac{64}{729} a^{6} - \frac{58}{243} a^{5} - \frac{70}{243} a^{4} + \frac{26}{81} a^{3} - \frac{2}{81} a^{2} + \frac{7}{81} a + \frac{2}{9}$, $\frac{1}{72171} a^{27} - \frac{5}{72171} a^{26} - \frac{1}{6561} a^{25} + \frac{1}{24057} a^{24} + \frac{13}{24057} a^{23} - \frac{4}{2187} a^{22} - \frac{1}{24057} a^{21} + \frac{2}{2187} a^{20} + \frac{85}{24057} a^{19} - \frac{25}{8019} a^{18} + \frac{58}{24057} a^{17} + \frac{103}{24057} a^{16} + \frac{8}{2187} a^{15} + \frac{95}{2673} a^{14} + \frac{26}{2673} a^{13} - \frac{5}{729} a^{12} - \frac{959}{24057} a^{11} + \frac{1279}{24057} a^{10} - \frac{1126}{72171} a^{9} - \frac{2086}{72171} a^{8} - \frac{6265}{72171} a^{7} - \frac{1327}{24057} a^{6} - \frac{3988}{8019} a^{5} - \frac{536}{8019} a^{4} - \frac{262}{2673} a^{3} - \frac{115}{243} a^{2} + \frac{956}{2673} a - \frac{29}{297}$, $\frac{1}{11475189} a^{28} + \frac{1}{3825063} a^{27} - \frac{578}{3825063} a^{26} + \frac{2522}{11475189} a^{25} - \frac{661}{3825063} a^{24} + \frac{1369}{3825063} a^{23} - \frac{841}{425007} a^{22} - \frac{637}{1275021} a^{21} - \frac{9265}{3825063} a^{20} + \frac{554}{115911} a^{19} + \frac{887}{425007} a^{18} - \frac{1358}{3825063} a^{17} - \frac{15346}{3825063} a^{16} + \frac{667}{425007} a^{15} - \frac{55648}{3825063} a^{14} + \frac{188278}{3825063} a^{13} + \frac{44432}{1275021} a^{12} - \frac{157643}{3825063} a^{11} + \frac{454907}{11475189} a^{10} - \frac{73636}{3825063} a^{9} + \frac{585799}{3825063} a^{8} + \frac{497758}{11475189} a^{7} + \frac{367711}{3825063} a^{6} + \frac{608321}{1275021} a^{5} - \frac{17185}{1275021} a^{4} - \frac{209908}{425007} a^{3} - \frac{874}{8019} a^{2} - \frac{145634}{425007} a - \frac{17986}{47223}$, $\frac{1}{158260775658308551236052670238805547952710951055911894018436637792202778504827903985171} a^{29} - \frac{5150149656476718383227641894069859194527495080557920589078018633193491117666502}{158260775658308551236052670238805547952710951055911894018436637792202778504827903985171} a^{28} - \frac{409957973079390277017290456387199541867824015270510604582698342235484366860225}{331783596767942455421494067586594440152433859655999777816429010046546705460855144623} a^{27} - \frac{2158646174080002575292572401436485946113702019446933199046457491564763785811395028}{158260775658308551236052670238805547952710951055911894018436637792202778504827903985171} a^{26} + \frac{15194264901140247947351944243341298691781006724323741267855531601605658630360956253}{158260775658308551236052670238805547952710951055911894018436637792202778504827903985171} a^{25} - \frac{8288442743050031998996811158352476994224908590188241396787671852186583094911698590}{52753591886102850412017556746268515984236983685303964672812212597400926168275967995057} a^{24} + \frac{24699995941612377619212996202835679598989334204863088738335112514650920193649394554}{52753591886102850412017556746268515984236983685303964672812212597400926168275967995057} a^{23} - \frac{85062548054929545792984091717465684530648003272075240369818160566020956284029565}{110594532255980818473831355862198146717477953218666592605476336682182235153618381541} a^{22} + \frac{4964589985581868180504564359759722106697726607783397953493886397302187212478915963}{52753591886102850412017556746268515984236983685303964672812212597400926168275967995057} a^{21} + \frac{534645659878959702329688063138880909557550223213717906227480679161624026654054964}{90486435482166124205862018432707574587027416269818121222662457285421828762051403079} a^{20} - \frac{81725258981222584842439388640598526578731985841098549149940119849661468425325425953}{17584530628700950137339185582089505328078994561767988224270737532466975389425322665019} a^{19} - \frac{3333520413648989067273560636182983346890704556571310505448628647684215216169565060}{1425772753678455416541015047196446377952350910413620666832762502632457464007458594461} a^{18} + \frac{155261309039196881531016223884142807065661277919120090776860433013432026965709704006}{52753591886102850412017556746268515984236983685303964672812212597400926168275967995057} a^{17} + \frac{2153143026620958367639431578660818193161242928306707808849496294245865794970867066}{995350790303827366264482202759783320457301578967999333449287030139640116382565433869} a^{16} + \frac{842717102797680326981020411316101449661501800873965390889322272967184021881185145502}{52753591886102850412017556746268515984236983685303964672812212597400926168275967995057} a^{15} - \frac{780678969814359440052025597784981869349377801161317265179124969282728154597619473190}{52753591886102850412017556746268515984236983685303964672812212597400926168275967995057} a^{14} + \frac{570869938488942730268838157564626746360744673631923239086555456256267138686698695114}{52753591886102850412017556746268515984236983685303964672812212597400926168275967995057} a^{13} - \frac{1499552484179422391995728918171176087329282854525051508318551116775163282998884027843}{52753591886102850412017556746268515984236983685303964672812212597400926168275967995057} a^{12} + \frac{7738264498288044955292083667360731878168838913977178798581240641170924009617209027872}{158260775658308551236052670238805547952710951055911894018436637792202778504827903985171} a^{11} + \frac{4671000685217555102450452573325787473699051704355116584857179282933662822123063093628}{158260775658308551236052670238805547952710951055911894018436637792202778504827903985171} a^{10} - \frac{1951209774314889650167666014977089026931535060055449905666211730905350658596580106739}{52753591886102850412017556746268515984236983685303964672812212597400926168275967995057} a^{9} + \frac{8402960704606455827459537994486146229007582606405952618710490968849685818151915905780}{158260775658308551236052670238805547952710951055911894018436637792202778504827903985171} a^{8} + \frac{16801742945224246569241890277971091732233824504795827488073826007839492167356397167269}{158260775658308551236052670238805547952710951055911894018436637792202778504827903985171} a^{7} - \frac{3059293665868966461141920804431640024202448832884584931582228487695800778722031601971}{52753591886102850412017556746268515984236983685303964672812212597400926168275967995057} a^{6} + \frac{2656521348149599642079314476242007401477296071476261506265895228006173462589842764145}{5861510209566983379113061860696501776026331520589329408090245844155658463141774221673} a^{5} + \frac{7467814579289960490652009895827140801769207797228409590080091105310093062880755947458}{17584530628700950137339185582089505328078994561767988224270737532466975389425322665019} a^{4} + \frac{2114857652960170053726178902026330935859876699343891984895874411040506357104134835556}{5861510209566983379113061860696501776026331520589329408090245844155658463141774221673} a^{3} - \frac{37198477453971199324389348497472465144777953294656037490332840910822611994041273918}{651278912174109264345895762299611308447370168954369934232249538239517607015752691297} a^{2} - \frac{2250363202225784213120108213989340612448808087737674281205303832699285730970801942032}{5861510209566983379113061860696501776026331520589329408090245844155658463141774221673} a + \frac{11200392239124752539998341490742681119828908935439835203115365731129496625450946253}{22457893523245147046410198699986596843012764446702411525249984077224745069508713493}$
Class group and class number
$C_{7}$, which has order $7$ (assuming GRH)
Unit group
Rank: | $15$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) ![]() | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 15542059406474578 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A solvable group of order 60 |
The 18 conjugacy class representatives for $D_{30}$ |
Character table for $D_{30}$ |
Intermediate fields
\(\Q(\sqrt{1213}) \), 3.1.3639.1, 5.1.13242321.1, 6.2.16062935373.1, 10.2.212710546411520733.1, 15.1.8450344007000266933623879.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{3}$ | R | $30$ | $15^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{14}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | $15^{2}$ | $30$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{6}$ | $30$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{14}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | $15^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{15}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{5}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{10}$ | $30$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{14}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
$3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
1213 | Data not computed |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
1.3.2t1.a.a | $1$ | $ 3 $ | \(\Q(\sqrt{-3}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
1.3639.2t1.a.a | $1$ | $ 3 \cdot 1213 $ | \(\Q(\sqrt{-3639}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
* | 1.1213.2t1.a.a | $1$ | $ 1213 $ | \(\Q(\sqrt{1213}) \) | $C_2$ (as 2T1) | $1$ | $1$ |
* | 2.3639.6t3.b.a | $2$ | $ 3 \cdot 1213 $ | 6.0.39726963.2 | $D_{6}$ (as 6T3) | $1$ | $0$ |
* | 2.3639.3t2.a.a | $2$ | $ 3 \cdot 1213 $ | 3.1.3639.1 | $S_3$ (as 3T2) | $1$ | $0$ |
* | 2.3639.5t2.a.b | $2$ | $ 3 \cdot 1213 $ | 5.1.13242321.1 | $D_{5}$ (as 5T2) | $1$ | $0$ |
* | 2.3639.5t2.a.a | $2$ | $ 3 \cdot 1213 $ | 5.1.13242321.1 | $D_{5}$ (as 5T2) | $1$ | $0$ |
* | 2.3639.10t3.a.b | $2$ | $ 3 \cdot 1213 $ | 10.0.526077196401123.1 | $D_{10}$ (as 10T3) | $1$ | $0$ |
* | 2.3639.10t3.a.a | $2$ | $ 3 \cdot 1213 $ | 10.0.526077196401123.1 | $D_{10}$ (as 10T3) | $1$ | $0$ |
* | 2.3639.15t2.a.d | $2$ | $ 3 \cdot 1213 $ | 15.1.8450344007000266933623879.1 | $D_{15}$ (as 15T2) | $1$ | $0$ |
* | 2.3639.30t14.a.c | $2$ | $ 3 \cdot 1213 $ | 30.2.86618284683850782149418819696007456920853807515055533.1 | $D_{30}$ (as 30T14) | $1$ | $0$ |
* | 2.3639.15t2.a.c | $2$ | $ 3 \cdot 1213 $ | 15.1.8450344007000266933623879.1 | $D_{15}$ (as 15T2) | $1$ | $0$ |
* | 2.3639.30t14.a.d | $2$ | $ 3 \cdot 1213 $ | 30.2.86618284683850782149418819696007456920853807515055533.1 | $D_{30}$ (as 30T14) | $1$ | $0$ |
* | 2.3639.15t2.a.b | $2$ | $ 3 \cdot 1213 $ | 15.1.8450344007000266933623879.1 | $D_{15}$ (as 15T2) | $1$ | $0$ |
* | 2.3639.30t14.a.b | $2$ | $ 3 \cdot 1213 $ | 30.2.86618284683850782149418819696007456920853807515055533.1 | $D_{30}$ (as 30T14) | $1$ | $0$ |
* | 2.3639.15t2.a.a | $2$ | $ 3 \cdot 1213 $ | 15.1.8450344007000266933623879.1 | $D_{15}$ (as 15T2) | $1$ | $0$ |
* | 2.3639.30t14.a.a | $2$ | $ 3 \cdot 1213 $ | 30.2.86618284683850782149418819696007456920853807515055533.1 | $D_{30}$ (as 30T14) | $1$ | $0$ |