Properties

Label 30.2.866...533.1
Degree $30$
Signature $[2, 14]$
Discriminant $8.662\times 10^{52}$
Root discriminant \(58.15\)
Ramified primes $3,1213$
Class number $7$ (GRH)
Class group [7] (GRH)
Galois group $D_{30}$ (as 30T14)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^30 - 8*x^29 + 43*x^28 - 163*x^27 + 446*x^26 - 385*x^25 - 2817*x^24 + 21864*x^23 - 95826*x^22 + 323313*x^21 - 894891*x^20 + 2178948*x^19 - 4695543*x^18 + 9008829*x^17 - 15016794*x^16 + 20604987*x^15 - 18291717*x^14 - 5218266*x^13 + 65252417*x^12 - 159581317*x^11 + 242005763*x^10 - 224361122*x^9 + 47652991*x^8 + 233622619*x^7 - 454603911*x^6 + 464765022*x^5 - 306287199*x^4 + 111399003*x^3 - 14270364*x^2 - 456489*x - 204363)
 
gp: K = bnfinit(y^30 - 8*y^29 + 43*y^28 - 163*y^27 + 446*y^26 - 385*y^25 - 2817*y^24 + 21864*y^23 - 95826*y^22 + 323313*y^21 - 894891*y^20 + 2178948*y^19 - 4695543*y^18 + 9008829*y^17 - 15016794*y^16 + 20604987*y^15 - 18291717*y^14 - 5218266*y^13 + 65252417*y^12 - 159581317*y^11 + 242005763*y^10 - 224361122*y^9 + 47652991*y^8 + 233622619*y^7 - 454603911*y^6 + 464765022*y^5 - 306287199*y^4 + 111399003*y^3 - 14270364*y^2 - 456489*y - 204363, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^30 - 8*x^29 + 43*x^28 - 163*x^27 + 446*x^26 - 385*x^25 - 2817*x^24 + 21864*x^23 - 95826*x^22 + 323313*x^21 - 894891*x^20 + 2178948*x^19 - 4695543*x^18 + 9008829*x^17 - 15016794*x^16 + 20604987*x^15 - 18291717*x^14 - 5218266*x^13 + 65252417*x^12 - 159581317*x^11 + 242005763*x^10 - 224361122*x^9 + 47652991*x^8 + 233622619*x^7 - 454603911*x^6 + 464765022*x^5 - 306287199*x^4 + 111399003*x^3 - 14270364*x^2 - 456489*x - 204363);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^30 - 8*x^29 + 43*x^28 - 163*x^27 + 446*x^26 - 385*x^25 - 2817*x^24 + 21864*x^23 - 95826*x^22 + 323313*x^21 - 894891*x^20 + 2178948*x^19 - 4695543*x^18 + 9008829*x^17 - 15016794*x^16 + 20604987*x^15 - 18291717*x^14 - 5218266*x^13 + 65252417*x^12 - 159581317*x^11 + 242005763*x^10 - 224361122*x^9 + 47652991*x^8 + 233622619*x^7 - 454603911*x^6 + 464765022*x^5 - 306287199*x^4 + 111399003*x^3 - 14270364*x^2 - 456489*x - 204363)
 

\( x^{30} - 8 x^{29} + 43 x^{28} - 163 x^{27} + 446 x^{26} - 385 x^{25} - 2817 x^{24} + 21864 x^{23} + \cdots - 204363 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $30$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[2, 14]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(86618284683850782149418819696007456920853807515055533\) \(\medspace = 3^{14}\cdot 1213^{15}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(58.15\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $3^{1/2}1213^{1/2}\approx 60.32412452742269$
Ramified primes:   \(3\), \(1213\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{1213}) \)
$\card{ \Aut(K/\Q) }$:  $2$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3}a^{6}+\frac{1}{3}a^{4}+\frac{1}{3}a^{2}$, $\frac{1}{3}a^{7}+\frac{1}{3}a^{5}+\frac{1}{3}a^{3}$, $\frac{1}{3}a^{8}-\frac{1}{3}a^{2}$, $\frac{1}{9}a^{9}-\frac{1}{3}a^{5}-\frac{4}{9}a^{3}-\frac{1}{3}a$, $\frac{1}{9}a^{10}-\frac{1}{9}a^{4}$, $\frac{1}{9}a^{11}-\frac{1}{9}a^{5}$, $\frac{1}{9}a^{12}-\frac{1}{9}a^{6}$, $\frac{1}{9}a^{13}-\frac{1}{9}a^{7}$, $\frac{1}{9}a^{14}-\frac{1}{9}a^{8}$, $\frac{1}{27}a^{15}+\frac{1}{27}a^{13}+\frac{1}{27}a^{11}-\frac{1}{27}a^{9}-\frac{1}{27}a^{7}+\frac{8}{27}a^{5}+\frac{1}{3}a^{3}+\frac{1}{3}a$, $\frac{1}{81}a^{16}-\frac{1}{81}a^{15}+\frac{1}{81}a^{14}+\frac{2}{81}a^{13}+\frac{1}{81}a^{12}+\frac{2}{81}a^{11}-\frac{1}{81}a^{10}+\frac{4}{81}a^{9}+\frac{8}{81}a^{8}-\frac{2}{81}a^{7}-\frac{10}{81}a^{6}-\frac{20}{81}a^{5}-\frac{1}{9}a^{4}-\frac{7}{27}a^{3}-\frac{2}{9}a^{2}-\frac{2}{9}a$, $\frac{1}{81}a^{17}+\frac{1}{27}a^{14}+\frac{1}{27}a^{13}+\frac{1}{27}a^{12}+\frac{1}{81}a^{11}+\frac{1}{27}a^{10}+\frac{1}{27}a^{9}+\frac{2}{27}a^{8}-\frac{4}{27}a^{7}-\frac{1}{27}a^{6}-\frac{2}{81}a^{5}-\frac{1}{27}a^{4}-\frac{1}{27}a^{3}-\frac{1}{9}a^{2}+\frac{1}{9}a$, $\frac{1}{81}a^{18}+\frac{1}{27}a^{14}+\frac{1}{81}a^{12}+\frac{1}{27}a^{10}-\frac{4}{27}a^{8}-\frac{2}{81}a^{6}-\frac{1}{27}a^{4}+\frac{1}{9}a^{2}$, $\frac{1}{81}a^{19}-\frac{2}{81}a^{13}+\frac{1}{81}a^{7}+\frac{1}{3}a^{5}+\frac{1}{3}a^{3}+\frac{1}{3}a$, $\frac{1}{81}a^{20}-\frac{2}{81}a^{14}+\frac{1}{81}a^{8}$, $\frac{1}{243}a^{21}-\frac{1}{243}a^{19}-\frac{2}{243}a^{15}+\frac{1}{27}a^{14}+\frac{2}{243}a^{13}-\frac{1}{27}a^{12}+\frac{1}{243}a^{9}-\frac{1}{27}a^{8}+\frac{26}{243}a^{7}+\frac{1}{27}a^{6}-\frac{1}{3}a^{5}-\frac{1}{3}a^{3}-\frac{4}{9}a$, $\frac{1}{243}a^{22}-\frac{1}{243}a^{20}+\frac{1}{243}a^{16}-\frac{1}{81}a^{15}+\frac{5}{243}a^{14}-\frac{4}{81}a^{13}+\frac{1}{81}a^{12}-\frac{1}{81}a^{11}-\frac{2}{243}a^{10}+\frac{4}{81}a^{9}-\frac{31}{243}a^{8}+\frac{4}{81}a^{7}-\frac{10}{81}a^{6}+\frac{37}{81}a^{5}-\frac{1}{9}a^{4}+\frac{11}{27}a^{3}+\frac{4}{9}a$, $\frac{1}{729}a^{23}+\frac{1}{729}a^{22}-\frac{1}{729}a^{20}-\frac{4}{729}a^{19}+\frac{4}{729}a^{17}+\frac{1}{729}a^{16}-\frac{1}{243}a^{15}-\frac{13}{729}a^{14}-\frac{40}{729}a^{13}+\frac{1}{243}a^{12}-\frac{23}{729}a^{11}+\frac{16}{729}a^{10}+\frac{10}{243}a^{9}+\frac{41}{729}a^{8}-\frac{64}{729}a^{7}+\frac{17}{243}a^{6}+\frac{23}{81}a^{5}+\frac{4}{81}a^{4}-\frac{4}{9}a^{3}-\frac{8}{27}a^{2}+\frac{2}{27}a+\frac{1}{3}$, $\frac{1}{2187}a^{24}-\frac{1}{2187}a^{22}-\frac{1}{2187}a^{21}-\frac{1}{729}a^{20}+\frac{4}{2187}a^{19}+\frac{13}{2187}a^{18}+\frac{2}{729}a^{17}-\frac{13}{2187}a^{16}+\frac{26}{2187}a^{15}+\frac{11}{243}a^{14}-\frac{83}{2187}a^{13}+\frac{1}{2187}a^{12}-\frac{8}{729}a^{11}-\frac{85}{2187}a^{10}+\frac{56}{2187}a^{9}-\frac{23}{729}a^{8}+\frac{160}{2187}a^{7}-\frac{14}{729}a^{6}+\frac{86}{243}a^{5}+\frac{35}{243}a^{4}-\frac{20}{81}a^{3}-\frac{29}{81}a^{2}-\frac{11}{81}a+\frac{2}{9}$, $\frac{1}{2187}a^{25}-\frac{1}{2187}a^{23}-\frac{1}{2187}a^{22}-\frac{1}{729}a^{21}+\frac{4}{2187}a^{20}+\frac{13}{2187}a^{19}+\frac{2}{729}a^{18}-\frac{13}{2187}a^{17}-\frac{1}{2187}a^{16}-\frac{4}{243}a^{15}-\frac{110}{2187}a^{14}+\frac{28}{2187}a^{13}-\frac{17}{729}a^{12}-\frac{58}{2187}a^{11}+\frac{83}{2187}a^{10}-\frac{5}{729}a^{9}-\frac{56}{2187}a^{8}-\frac{23}{729}a^{7}+\frac{35}{243}a^{6}-\frac{76}{243}a^{5}-\frac{38}{81}a^{4}+\frac{19}{81}a^{3}-\frac{20}{81}a^{2}-\frac{2}{9}a$, $\frac{1}{2187}a^{26}-\frac{1}{2187}a^{23}-\frac{4}{2187}a^{22}+\frac{1}{729}a^{21}+\frac{10}{2187}a^{20}+\frac{10}{2187}a^{19}+\frac{5}{2187}a^{17}+\frac{5}{2187}a^{16}+\frac{8}{729}a^{15}-\frac{62}{2187}a^{14}-\frac{107}{2187}a^{13}-\frac{1}{729}a^{12}+\frac{86}{2187}a^{11}+\frac{89}{2187}a^{10}+\frac{2}{81}a^{9}-\frac{64}{729}a^{8}-\frac{281}{2187}a^{7}+\frac{64}{729}a^{6}-\frac{58}{243}a^{5}-\frac{70}{243}a^{4}+\frac{26}{81}a^{3}-\frac{2}{81}a^{2}+\frac{7}{81}a+\frac{2}{9}$, $\frac{1}{72171}a^{27}-\frac{5}{72171}a^{26}-\frac{1}{6561}a^{25}+\frac{1}{24057}a^{24}+\frac{13}{24057}a^{23}-\frac{4}{2187}a^{22}-\frac{1}{24057}a^{21}+\frac{2}{2187}a^{20}+\frac{85}{24057}a^{19}-\frac{25}{8019}a^{18}+\frac{58}{24057}a^{17}+\frac{103}{24057}a^{16}+\frac{8}{2187}a^{15}+\frac{95}{2673}a^{14}+\frac{26}{2673}a^{13}-\frac{5}{729}a^{12}-\frac{959}{24057}a^{11}+\frac{1279}{24057}a^{10}-\frac{1126}{72171}a^{9}-\frac{2086}{72171}a^{8}-\frac{6265}{72171}a^{7}-\frac{1327}{24057}a^{6}-\frac{3988}{8019}a^{5}-\frac{536}{8019}a^{4}-\frac{262}{2673}a^{3}-\frac{115}{243}a^{2}+\frac{956}{2673}a-\frac{29}{297}$, $\frac{1}{11475189}a^{28}+\frac{1}{3825063}a^{27}-\frac{578}{3825063}a^{26}+\frac{2522}{11475189}a^{25}-\frac{661}{3825063}a^{24}+\frac{1369}{3825063}a^{23}-\frac{841}{425007}a^{22}-\frac{637}{1275021}a^{21}-\frac{9265}{3825063}a^{20}+\frac{554}{115911}a^{19}+\frac{887}{425007}a^{18}-\frac{1358}{3825063}a^{17}-\frac{15346}{3825063}a^{16}+\frac{667}{425007}a^{15}-\frac{55648}{3825063}a^{14}+\frac{188278}{3825063}a^{13}+\frac{44432}{1275021}a^{12}-\frac{157643}{3825063}a^{11}+\frac{454907}{11475189}a^{10}-\frac{73636}{3825063}a^{9}+\frac{585799}{3825063}a^{8}+\frac{497758}{11475189}a^{7}+\frac{367711}{3825063}a^{6}+\frac{608321}{1275021}a^{5}-\frac{17185}{1275021}a^{4}-\frac{209908}{425007}a^{3}-\frac{874}{8019}a^{2}-\frac{145634}{425007}a-\frac{17986}{47223}$, $\frac{1}{15\!\cdots\!71}a^{29}-\frac{51\!\cdots\!02}{15\!\cdots\!71}a^{28}-\frac{40\!\cdots\!25}{33\!\cdots\!23}a^{27}-\frac{21\!\cdots\!28}{15\!\cdots\!71}a^{26}+\frac{15\!\cdots\!53}{15\!\cdots\!71}a^{25}-\frac{82\!\cdots\!90}{52\!\cdots\!57}a^{24}+\frac{24\!\cdots\!54}{52\!\cdots\!57}a^{23}-\frac{85\!\cdots\!65}{11\!\cdots\!41}a^{22}+\frac{49\!\cdots\!63}{52\!\cdots\!57}a^{21}+\frac{53\!\cdots\!64}{90\!\cdots\!79}a^{20}-\frac{81\!\cdots\!53}{17\!\cdots\!19}a^{19}-\frac{33\!\cdots\!60}{14\!\cdots\!61}a^{18}+\frac{15\!\cdots\!06}{52\!\cdots\!57}a^{17}+\frac{21\!\cdots\!66}{99\!\cdots\!69}a^{16}+\frac{84\!\cdots\!02}{52\!\cdots\!57}a^{15}-\frac{78\!\cdots\!90}{52\!\cdots\!57}a^{14}+\frac{57\!\cdots\!14}{52\!\cdots\!57}a^{13}-\frac{14\!\cdots\!43}{52\!\cdots\!57}a^{12}+\frac{77\!\cdots\!72}{15\!\cdots\!71}a^{11}+\frac{46\!\cdots\!28}{15\!\cdots\!71}a^{10}-\frac{19\!\cdots\!39}{52\!\cdots\!57}a^{9}+\frac{84\!\cdots\!80}{15\!\cdots\!71}a^{8}+\frac{16\!\cdots\!69}{15\!\cdots\!71}a^{7}-\frac{30\!\cdots\!71}{52\!\cdots\!57}a^{6}+\frac{26\!\cdots\!45}{58\!\cdots\!73}a^{5}+\frac{74\!\cdots\!58}{17\!\cdots\!19}a^{4}+\frac{21\!\cdots\!56}{58\!\cdots\!73}a^{3}-\frac{37\!\cdots\!18}{65\!\cdots\!97}a^{2}-\frac{22\!\cdots\!32}{58\!\cdots\!73}a+\frac{11\!\cdots\!53}{22\!\cdots\!93}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $3$

Class group and class number

$C_{7}$, which has order $7$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $15$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{10\!\cdots\!84}{97\!\cdots\!17}a^{29}-\frac{82\!\cdots\!68}{97\!\cdots\!17}a^{28}+\frac{49\!\cdots\!20}{10\!\cdots\!13}a^{27}-\frac{16\!\cdots\!93}{97\!\cdots\!17}a^{26}+\frac{41\!\cdots\!41}{88\!\cdots\!47}a^{25}-\frac{12\!\cdots\!69}{32\!\cdots\!39}a^{24}-\frac{96\!\cdots\!44}{32\!\cdots\!39}a^{23}+\frac{83\!\cdots\!77}{35\!\cdots\!71}a^{22}-\frac{32\!\cdots\!19}{32\!\cdots\!39}a^{21}+\frac{11\!\cdots\!26}{32\!\cdots\!39}a^{20}-\frac{10\!\cdots\!34}{10\!\cdots\!13}a^{19}+\frac{20\!\cdots\!93}{87\!\cdots\!47}a^{18}-\frac{16\!\cdots\!84}{32\!\cdots\!39}a^{17}+\frac{28\!\cdots\!39}{29\!\cdots\!49}a^{16}-\frac{51\!\cdots\!77}{32\!\cdots\!39}a^{15}+\frac{64\!\cdots\!50}{29\!\cdots\!49}a^{14}-\frac{63\!\cdots\!61}{32\!\cdots\!39}a^{13}-\frac{15\!\cdots\!52}{32\!\cdots\!39}a^{12}+\frac{12\!\cdots\!68}{18\!\cdots\!89}a^{11}-\frac{16\!\cdots\!76}{97\!\cdots\!17}a^{10}+\frac{83\!\cdots\!95}{32\!\cdots\!39}a^{9}-\frac{23\!\cdots\!64}{97\!\cdots\!17}a^{8}+\frac{52\!\cdots\!30}{88\!\cdots\!47}a^{7}+\frac{77\!\cdots\!77}{32\!\cdots\!39}a^{6}-\frac{17\!\cdots\!94}{35\!\cdots\!71}a^{5}+\frac{54\!\cdots\!20}{10\!\cdots\!13}a^{4}-\frac{12\!\cdots\!55}{35\!\cdots\!71}a^{3}+\frac{50\!\cdots\!57}{39\!\cdots\!19}a^{2}-\frac{64\!\cdots\!16}{35\!\cdots\!71}a-\frac{10\!\cdots\!59}{13\!\cdots\!11}$, $\frac{48\!\cdots\!32}{61\!\cdots\!63}a^{29}-\frac{19\!\cdots\!81}{32\!\cdots\!39}a^{28}+\frac{33\!\cdots\!31}{10\!\cdots\!87}a^{27}-\frac{36\!\cdots\!87}{32\!\cdots\!39}a^{26}+\frac{95\!\cdots\!61}{32\!\cdots\!39}a^{25}-\frac{16\!\cdots\!53}{10\!\cdots\!13}a^{24}-\frac{24\!\cdots\!16}{10\!\cdots\!13}a^{23}+\frac{19\!\cdots\!00}{11\!\cdots\!57}a^{22}-\frac{72\!\cdots\!61}{10\!\cdots\!13}a^{21}+\frac{23\!\cdots\!39}{10\!\cdots\!13}a^{20}-\frac{21\!\cdots\!50}{35\!\cdots\!71}a^{19}+\frac{41\!\cdots\!70}{29\!\cdots\!49}a^{18}-\frac{32\!\cdots\!71}{10\!\cdots\!13}a^{17}+\frac{60\!\cdots\!03}{10\!\cdots\!13}a^{16}-\frac{98\!\cdots\!84}{10\!\cdots\!13}a^{15}+\frac{12\!\cdots\!80}{10\!\cdots\!13}a^{14}-\frac{96\!\cdots\!09}{10\!\cdots\!13}a^{13}-\frac{81\!\cdots\!93}{10\!\cdots\!13}a^{12}+\frac{14\!\cdots\!98}{32\!\cdots\!39}a^{11}-\frac{32\!\cdots\!28}{32\!\cdots\!39}a^{10}+\frac{14\!\cdots\!74}{10\!\cdots\!13}a^{9}-\frac{34\!\cdots\!88}{32\!\cdots\!39}a^{8}-\frac{38\!\cdots\!04}{32\!\cdots\!39}a^{7}+\frac{18\!\cdots\!38}{10\!\cdots\!13}a^{6}-\frac{31\!\cdots\!44}{11\!\cdots\!57}a^{5}+\frac{80\!\cdots\!61}{35\!\cdots\!71}a^{4}-\frac{14\!\cdots\!21}{11\!\cdots\!57}a^{3}+\frac{20\!\cdots\!04}{75\!\cdots\!23}a^{2}-\frac{10\!\cdots\!06}{11\!\cdots\!57}a+\frac{15\!\cdots\!23}{45\!\cdots\!37}$, $\frac{96\!\cdots\!29}{32\!\cdots\!39}a^{29}-\frac{71\!\cdots\!69}{32\!\cdots\!39}a^{28}+\frac{13\!\cdots\!69}{11\!\cdots\!57}a^{27}-\frac{13\!\cdots\!09}{32\!\cdots\!39}a^{26}+\frac{32\!\cdots\!78}{29\!\cdots\!49}a^{25}-\frac{11\!\cdots\!07}{20\!\cdots\!21}a^{24}-\frac{94\!\cdots\!21}{10\!\cdots\!13}a^{23}+\frac{72\!\cdots\!55}{11\!\cdots\!57}a^{22}-\frac{27\!\cdots\!34}{10\!\cdots\!13}a^{21}+\frac{89\!\cdots\!60}{10\!\cdots\!13}a^{20}-\frac{72\!\cdots\!16}{32\!\cdots\!61}a^{19}+\frac{15\!\cdots\!56}{29\!\cdots\!49}a^{18}-\frac{11\!\cdots\!27}{10\!\cdots\!13}a^{17}+\frac{22\!\cdots\!21}{10\!\cdots\!13}a^{16}-\frac{35\!\cdots\!06}{10\!\cdots\!13}a^{15}+\frac{46\!\cdots\!98}{10\!\cdots\!13}a^{14}-\frac{32\!\cdots\!61}{10\!\cdots\!13}a^{13}-\frac{36\!\cdots\!13}{10\!\cdots\!13}a^{12}+\frac{57\!\cdots\!00}{32\!\cdots\!39}a^{11}-\frac{12\!\cdots\!84}{32\!\cdots\!39}a^{10}+\frac{55\!\cdots\!47}{10\!\cdots\!13}a^{9}-\frac{12\!\cdots\!19}{32\!\cdots\!39}a^{8}-\frac{26\!\cdots\!16}{32\!\cdots\!39}a^{7}+\frac{71\!\cdots\!09}{10\!\cdots\!13}a^{6}-\frac{11\!\cdots\!40}{11\!\cdots\!57}a^{5}+\frac{29\!\cdots\!39}{35\!\cdots\!71}a^{4}-\frac{52\!\cdots\!41}{11\!\cdots\!57}a^{3}+\frac{10\!\cdots\!41}{13\!\cdots\!73}a^{2}+\frac{47\!\cdots\!73}{11\!\cdots\!57}a+\frac{35\!\cdots\!54}{45\!\cdots\!37}$, $\frac{86\!\cdots\!37}{97\!\cdots\!17}a^{29}-\frac{67\!\cdots\!09}{97\!\cdots\!17}a^{28}+\frac{76\!\cdots\!57}{20\!\cdots\!21}a^{27}-\frac{13\!\cdots\!00}{97\!\cdots\!17}a^{26}+\frac{36\!\cdots\!13}{97\!\cdots\!17}a^{25}-\frac{98\!\cdots\!27}{32\!\cdots\!39}a^{24}-\frac{80\!\cdots\!16}{32\!\cdots\!39}a^{23}+\frac{12\!\cdots\!01}{67\!\cdots\!07}a^{22}-\frac{26\!\cdots\!87}{32\!\cdots\!39}a^{21}+\frac{16\!\cdots\!82}{61\!\cdots\!63}a^{20}-\frac{82\!\cdots\!30}{10\!\cdots\!13}a^{19}+\frac{16\!\cdots\!19}{87\!\cdots\!47}a^{18}-\frac{12\!\cdots\!46}{32\!\cdots\!39}a^{17}+\frac{46\!\cdots\!94}{61\!\cdots\!63}a^{16}-\frac{41\!\cdots\!02}{32\!\cdots\!39}a^{15}+\frac{56\!\cdots\!68}{32\!\cdots\!39}a^{14}-\frac{49\!\cdots\!96}{32\!\cdots\!39}a^{13}-\frac{15\!\cdots\!90}{32\!\cdots\!39}a^{12}+\frac{54\!\cdots\!25}{97\!\cdots\!17}a^{11}-\frac{13\!\cdots\!44}{97\!\cdots\!17}a^{10}+\frac{65\!\cdots\!71}{32\!\cdots\!39}a^{9}-\frac{18\!\cdots\!00}{97\!\cdots\!17}a^{8}+\frac{37\!\cdots\!41}{97\!\cdots\!17}a^{7}+\frac{63\!\cdots\!23}{32\!\cdots\!39}a^{6}-\frac{13\!\cdots\!84}{35\!\cdots\!71}a^{5}+\frac{42\!\cdots\!15}{10\!\cdots\!13}a^{4}-\frac{93\!\cdots\!48}{35\!\cdots\!71}a^{3}+\frac{12\!\cdots\!62}{13\!\cdots\!73}a^{2}-\frac{41\!\cdots\!75}{35\!\cdots\!71}a-\frac{13\!\cdots\!70}{13\!\cdots\!11}$, $\frac{32\!\cdots\!07}{32\!\cdots\!39}a^{29}-\frac{24\!\cdots\!57}{32\!\cdots\!39}a^{28}+\frac{14\!\cdots\!32}{35\!\cdots\!71}a^{27}-\frac{46\!\cdots\!97}{32\!\cdots\!39}a^{26}+\frac{12\!\cdots\!73}{32\!\cdots\!39}a^{25}-\frac{22\!\cdots\!44}{10\!\cdots\!13}a^{24}-\frac{59\!\cdots\!74}{20\!\cdots\!21}a^{23}+\frac{24\!\cdots\!08}{11\!\cdots\!57}a^{22}-\frac{93\!\cdots\!76}{10\!\cdots\!13}a^{21}+\frac{30\!\cdots\!63}{10\!\cdots\!13}a^{20}-\frac{27\!\cdots\!70}{35\!\cdots\!71}a^{19}+\frac{53\!\cdots\!17}{29\!\cdots\!49}a^{18}-\frac{41\!\cdots\!72}{10\!\cdots\!13}a^{17}+\frac{78\!\cdots\!33}{10\!\cdots\!13}a^{16}-\frac{12\!\cdots\!08}{10\!\cdots\!13}a^{15}+\frac{16\!\cdots\!83}{10\!\cdots\!13}a^{14}-\frac{12\!\cdots\!26}{10\!\cdots\!13}a^{13}-\frac{11\!\cdots\!99}{10\!\cdots\!13}a^{12}+\frac{19\!\cdots\!51}{32\!\cdots\!39}a^{11}-\frac{42\!\cdots\!56}{32\!\cdots\!39}a^{10}+\frac{19\!\cdots\!33}{10\!\cdots\!13}a^{9}-\frac{45\!\cdots\!42}{32\!\cdots\!39}a^{8}-\frac{50\!\cdots\!17}{32\!\cdots\!39}a^{7}+\frac{24\!\cdots\!79}{10\!\cdots\!13}a^{6}-\frac{46\!\cdots\!59}{13\!\cdots\!73}a^{5}+\frac{10\!\cdots\!72}{35\!\cdots\!71}a^{4}-\frac{20\!\cdots\!01}{11\!\cdots\!57}a^{3}+\frac{13\!\cdots\!70}{36\!\cdots\!29}a^{2}+\frac{19\!\cdots\!84}{11\!\cdots\!57}a+\frac{19\!\cdots\!76}{45\!\cdots\!37}$, $\frac{11\!\cdots\!20}{52\!\cdots\!57}a^{29}-\frac{81\!\cdots\!93}{52\!\cdots\!57}a^{28}+\frac{46\!\cdots\!31}{58\!\cdots\!73}a^{27}-\frac{14\!\cdots\!70}{52\!\cdots\!57}a^{26}+\frac{35\!\cdots\!81}{52\!\cdots\!57}a^{25}-\frac{10\!\cdots\!49}{17\!\cdots\!19}a^{24}-\frac{11\!\cdots\!35}{17\!\cdots\!19}a^{23}+\frac{82\!\cdots\!66}{19\!\cdots\!91}a^{22}-\frac{29\!\cdots\!08}{17\!\cdots\!19}a^{21}+\frac{92\!\cdots\!75}{17\!\cdots\!19}a^{20}-\frac{79\!\cdots\!74}{58\!\cdots\!73}a^{19}+\frac{15\!\cdots\!53}{47\!\cdots\!87}a^{18}-\frac{11\!\cdots\!24}{17\!\cdots\!19}a^{17}+\frac{20\!\cdots\!13}{17\!\cdots\!19}a^{16}-\frac{31\!\cdots\!43}{17\!\cdots\!19}a^{15}+\frac{37\!\cdots\!98}{17\!\cdots\!19}a^{14}-\frac{16\!\cdots\!81}{17\!\cdots\!19}a^{13}-\frac{56\!\cdots\!18}{17\!\cdots\!19}a^{12}+\frac{56\!\cdots\!12}{47\!\cdots\!87}a^{11}-\frac{10\!\cdots\!44}{47\!\cdots\!87}a^{10}+\frac{44\!\cdots\!42}{17\!\cdots\!19}a^{9}-\frac{67\!\cdots\!18}{52\!\cdots\!57}a^{8}-\frac{81\!\cdots\!37}{52\!\cdots\!57}a^{7}+\frac{76\!\cdots\!08}{17\!\cdots\!19}a^{6}-\frac{98\!\cdots\!71}{19\!\cdots\!91}a^{5}+\frac{18\!\cdots\!09}{58\!\cdots\!73}a^{4}-\frac{20\!\cdots\!95}{19\!\cdots\!91}a^{3}-\frac{10\!\cdots\!99}{21\!\cdots\!99}a^{2}-\frac{10\!\cdots\!30}{19\!\cdots\!91}a-\frac{32\!\cdots\!02}{74\!\cdots\!31}$, $\frac{53\!\cdots\!59}{15\!\cdots\!71}a^{29}-\frac{62\!\cdots\!47}{15\!\cdots\!71}a^{28}+\frac{40\!\cdots\!17}{17\!\cdots\!19}a^{27}-\frac{15\!\cdots\!32}{15\!\cdots\!71}a^{26}+\frac{45\!\cdots\!05}{15\!\cdots\!71}a^{25}-\frac{22\!\cdots\!89}{52\!\cdots\!57}a^{24}-\frac{60\!\cdots\!30}{52\!\cdots\!57}a^{23}+\frac{67\!\cdots\!09}{58\!\cdots\!73}a^{22}-\frac{28\!\cdots\!94}{52\!\cdots\!57}a^{21}+\frac{10\!\cdots\!46}{52\!\cdots\!57}a^{20}-\frac{97\!\cdots\!11}{17\!\cdots\!19}a^{19}+\frac{19\!\cdots\!38}{14\!\cdots\!61}a^{18}-\frac{15\!\cdots\!61}{52\!\cdots\!57}a^{17}+\frac{30\!\cdots\!35}{52\!\cdots\!57}a^{16}-\frac{50\!\cdots\!63}{52\!\cdots\!57}a^{15}+\frac{69\!\cdots\!73}{52\!\cdots\!57}a^{14}-\frac{63\!\cdots\!82}{52\!\cdots\!57}a^{13}-\frac{22\!\cdots\!75}{52\!\cdots\!57}a^{12}+\frac{72\!\cdots\!26}{15\!\cdots\!71}a^{11}-\frac{17\!\cdots\!01}{15\!\cdots\!71}a^{10}+\frac{79\!\cdots\!70}{47\!\cdots\!87}a^{9}-\frac{41\!\cdots\!83}{29\!\cdots\!07}a^{8}-\frac{24\!\cdots\!75}{15\!\cdots\!71}a^{7}+\frac{11\!\cdots\!44}{52\!\cdots\!57}a^{6}-\frac{18\!\cdots\!28}{58\!\cdots\!73}a^{5}+\frac{45\!\cdots\!95}{17\!\cdots\!19}a^{4}-\frac{57\!\cdots\!38}{58\!\cdots\!73}a^{3}+\frac{13\!\cdots\!76}{21\!\cdots\!99}a^{2}+\frac{18\!\cdots\!70}{58\!\cdots\!73}a+\frac{62\!\cdots\!94}{22\!\cdots\!93}$, $\frac{87\!\cdots\!24}{15\!\cdots\!71}a^{29}-\frac{75\!\cdots\!85}{15\!\cdots\!71}a^{28}+\frac{46\!\cdots\!22}{17\!\cdots\!19}a^{27}-\frac{16\!\cdots\!61}{15\!\cdots\!71}a^{26}+\frac{46\!\cdots\!78}{15\!\cdots\!71}a^{25}-\frac{18\!\cdots\!21}{52\!\cdots\!57}a^{24}-\frac{78\!\cdots\!03}{52\!\cdots\!57}a^{23}+\frac{76\!\cdots\!50}{58\!\cdots\!73}a^{22}-\frac{31\!\cdots\!57}{52\!\cdots\!57}a^{21}+\frac{11\!\cdots\!10}{52\!\cdots\!57}a^{20}-\frac{10\!\cdots\!97}{17\!\cdots\!19}a^{19}+\frac{20\!\cdots\!38}{14\!\cdots\!61}a^{18}-\frac{17\!\cdots\!99}{52\!\cdots\!57}a^{17}+\frac{33\!\cdots\!48}{52\!\cdots\!57}a^{16}-\frac{56\!\cdots\!53}{52\!\cdots\!57}a^{15}+\frac{73\!\cdots\!82}{47\!\cdots\!87}a^{14}-\frac{80\!\cdots\!10}{52\!\cdots\!57}a^{13}+\frac{43\!\cdots\!53}{52\!\cdots\!57}a^{12}+\frac{63\!\cdots\!47}{15\!\cdots\!71}a^{11}-\frac{17\!\cdots\!69}{15\!\cdots\!71}a^{10}+\frac{94\!\cdots\!22}{52\!\cdots\!57}a^{9}-\frac{29\!\cdots\!57}{15\!\cdots\!71}a^{8}+\frac{11\!\cdots\!42}{15\!\cdots\!71}a^{7}+\frac{73\!\cdots\!16}{52\!\cdots\!57}a^{6}-\frac{19\!\cdots\!70}{58\!\cdots\!73}a^{5}+\frac{66\!\cdots\!05}{17\!\cdots\!19}a^{4}-\frac{15\!\cdots\!13}{58\!\cdots\!73}a^{3}+\frac{82\!\cdots\!17}{72\!\cdots\!33}a^{2}-\frac{91\!\cdots\!14}{58\!\cdots\!73}a-\frac{49\!\cdots\!51}{22\!\cdots\!93}$, $\frac{49\!\cdots\!59}{97\!\cdots\!17}a^{29}-\frac{37\!\cdots\!03}{97\!\cdots\!17}a^{28}+\frac{21\!\cdots\!83}{10\!\cdots\!13}a^{27}-\frac{72\!\cdots\!37}{97\!\cdots\!17}a^{26}+\frac{18\!\cdots\!68}{97\!\cdots\!17}a^{25}-\frac{35\!\cdots\!18}{32\!\cdots\!39}a^{24}-\frac{48\!\cdots\!64}{32\!\cdots\!39}a^{23}+\frac{37\!\cdots\!35}{35\!\cdots\!71}a^{22}-\frac{14\!\cdots\!19}{32\!\cdots\!39}a^{21}+\frac{47\!\cdots\!60}{32\!\cdots\!39}a^{20}-\frac{42\!\cdots\!88}{10\!\cdots\!13}a^{19}+\frac{81\!\cdots\!38}{87\!\cdots\!47}a^{18}-\frac{63\!\cdots\!75}{32\!\cdots\!39}a^{17}+\frac{11\!\cdots\!06}{32\!\cdots\!39}a^{16}-\frac{19\!\cdots\!96}{32\!\cdots\!39}a^{15}+\frac{46\!\cdots\!18}{61\!\cdots\!63}a^{14}-\frac{18\!\cdots\!26}{32\!\cdots\!39}a^{13}-\frac{18\!\cdots\!63}{32\!\cdots\!39}a^{12}+\frac{30\!\cdots\!71}{97\!\cdots\!17}a^{11}-\frac{65\!\cdots\!69}{97\!\cdots\!17}a^{10}+\frac{29\!\cdots\!29}{32\!\cdots\!39}a^{9}-\frac{67\!\cdots\!55}{97\!\cdots\!17}a^{8}-\frac{12\!\cdots\!78}{88\!\cdots\!47}a^{7}+\frac{38\!\cdots\!06}{32\!\cdots\!39}a^{6}-\frac{64\!\cdots\!03}{35\!\cdots\!71}a^{5}+\frac{15\!\cdots\!87}{10\!\cdots\!13}a^{4}-\frac{27\!\cdots\!82}{35\!\cdots\!71}a^{3}+\frac{18\!\cdots\!18}{14\!\cdots\!97}a^{2}+\frac{14\!\cdots\!55}{35\!\cdots\!71}a+\frac{21\!\cdots\!42}{13\!\cdots\!11}$, $\frac{14\!\cdots\!02}{15\!\cdots\!71}a^{29}-\frac{11\!\cdots\!61}{15\!\cdots\!71}a^{28}+\frac{12\!\cdots\!62}{33\!\cdots\!23}a^{27}-\frac{21\!\cdots\!68}{15\!\cdots\!71}a^{26}+\frac{56\!\cdots\!04}{15\!\cdots\!71}a^{25}-\frac{11\!\cdots\!11}{52\!\cdots\!57}a^{24}-\frac{12\!\cdots\!36}{47\!\cdots\!87}a^{23}+\frac{21\!\cdots\!48}{11\!\cdots\!41}a^{22}-\frac{42\!\cdots\!30}{52\!\cdots\!57}a^{21}+\frac{26\!\cdots\!44}{99\!\cdots\!69}a^{20}-\frac{12\!\cdots\!54}{17\!\cdots\!19}a^{19}+\frac{24\!\cdots\!91}{14\!\cdots\!61}a^{18}-\frac{19\!\cdots\!67}{52\!\cdots\!57}a^{17}+\frac{68\!\cdots\!30}{99\!\cdots\!69}a^{16}-\frac{58\!\cdots\!36}{52\!\cdots\!57}a^{15}+\frac{76\!\cdots\!80}{52\!\cdots\!57}a^{14}-\frac{57\!\cdots\!41}{52\!\cdots\!57}a^{13}-\frac{50\!\cdots\!57}{52\!\cdots\!57}a^{12}+\frac{90\!\cdots\!82}{15\!\cdots\!71}a^{11}-\frac{19\!\cdots\!21}{15\!\cdots\!71}a^{10}+\frac{91\!\cdots\!68}{52\!\cdots\!57}a^{9}-\frac{21\!\cdots\!22}{15\!\cdots\!71}a^{8}-\frac{25\!\cdots\!43}{15\!\cdots\!71}a^{7}+\frac{11\!\cdots\!61}{52\!\cdots\!57}a^{6}-\frac{19\!\cdots\!94}{58\!\cdots\!73}a^{5}+\frac{50\!\cdots\!60}{17\!\cdots\!19}a^{4}-\frac{85\!\cdots\!44}{53\!\cdots\!43}a^{3}+\frac{24\!\cdots\!25}{59\!\cdots\!27}a^{2}+\frac{47\!\cdots\!50}{58\!\cdots\!73}a-\frac{25\!\cdots\!43}{22\!\cdots\!93}$, $\frac{13\!\cdots\!27}{15\!\cdots\!71}a^{29}-\frac{61\!\cdots\!30}{15\!\cdots\!71}a^{28}+\frac{26\!\cdots\!74}{17\!\cdots\!19}a^{27}-\frac{46\!\cdots\!04}{15\!\cdots\!71}a^{26}-\frac{87\!\cdots\!10}{15\!\cdots\!71}a^{25}+\frac{32\!\cdots\!91}{52\!\cdots\!57}a^{24}-\frac{13\!\cdots\!54}{52\!\cdots\!57}a^{23}+\frac{53\!\cdots\!67}{58\!\cdots\!73}a^{22}-\frac{12\!\cdots\!75}{52\!\cdots\!57}a^{21}+\frac{21\!\cdots\!59}{52\!\cdots\!57}a^{20}-\frac{46\!\cdots\!50}{17\!\cdots\!19}a^{19}-\frac{54\!\cdots\!17}{12\!\cdots\!51}a^{18}+\frac{18\!\cdots\!27}{52\!\cdots\!57}a^{17}-\frac{63\!\cdots\!98}{52\!\cdots\!57}a^{16}+\frac{16\!\cdots\!33}{52\!\cdots\!57}a^{15}-\frac{33\!\cdots\!99}{52\!\cdots\!57}a^{14}+\frac{61\!\cdots\!50}{52\!\cdots\!57}a^{13}-\frac{65\!\cdots\!25}{47\!\cdots\!87}a^{12}+\frac{48\!\cdots\!34}{15\!\cdots\!71}a^{11}+\frac{52\!\cdots\!36}{15\!\cdots\!71}a^{10}-\frac{50\!\cdots\!07}{52\!\cdots\!57}a^{9}+\frac{21\!\cdots\!96}{15\!\cdots\!71}a^{8}-\frac{10\!\cdots\!19}{15\!\cdots\!71}a^{7}-\frac{50\!\cdots\!17}{52\!\cdots\!57}a^{6}+\frac{12\!\cdots\!43}{58\!\cdots\!73}a^{5}-\frac{32\!\cdots\!85}{17\!\cdots\!19}a^{4}+\frac{21\!\cdots\!82}{58\!\cdots\!73}a^{3}+\frac{33\!\cdots\!94}{21\!\cdots\!99}a^{2}+\frac{15\!\cdots\!02}{58\!\cdots\!73}a-\frac{73\!\cdots\!42}{22\!\cdots\!93}$, $\frac{16\!\cdots\!08}{52\!\cdots\!57}a^{29}-\frac{17\!\cdots\!41}{52\!\cdots\!57}a^{28}+\frac{96\!\cdots\!00}{58\!\cdots\!73}a^{27}-\frac{30\!\cdots\!17}{52\!\cdots\!57}a^{26}+\frac{62\!\cdots\!90}{47\!\cdots\!87}a^{25}+\frac{46\!\cdots\!57}{17\!\cdots\!19}a^{24}-\frac{32\!\cdots\!13}{17\!\cdots\!19}a^{23}+\frac{18\!\cdots\!37}{19\!\cdots\!91}a^{22}-\frac{57\!\cdots\!18}{15\!\cdots\!29}a^{21}+\frac{18\!\cdots\!80}{17\!\cdots\!19}a^{20}-\frac{13\!\cdots\!19}{58\!\cdots\!73}a^{19}+\frac{20\!\cdots\!73}{47\!\cdots\!87}a^{18}-\frac{13\!\cdots\!50}{17\!\cdots\!19}a^{17}+\frac{15\!\cdots\!39}{17\!\cdots\!19}a^{16}-\frac{48\!\cdots\!20}{17\!\cdots\!19}a^{15}-\frac{42\!\cdots\!11}{17\!\cdots\!19}a^{14}+\frac{15\!\cdots\!71}{15\!\cdots\!29}a^{13}-\frac{40\!\cdots\!21}{17\!\cdots\!19}a^{12}+\frac{19\!\cdots\!98}{52\!\cdots\!57}a^{11}-\frac{17\!\cdots\!18}{52\!\cdots\!57}a^{10}-\frac{33\!\cdots\!24}{17\!\cdots\!19}a^{9}+\frac{70\!\cdots\!88}{52\!\cdots\!57}a^{8}-\frac{12\!\cdots\!03}{52\!\cdots\!57}a^{7}+\frac{27\!\cdots\!19}{15\!\cdots\!29}a^{6}+\frac{13\!\cdots\!33}{19\!\cdots\!91}a^{5}-\frac{16\!\cdots\!25}{58\!\cdots\!73}a^{4}+\frac{57\!\cdots\!51}{19\!\cdots\!91}a^{3}-\frac{75\!\cdots\!53}{80\!\cdots\!37}a^{2}-\frac{14\!\cdots\!00}{36\!\cdots\!47}a-\frac{44\!\cdots\!77}{74\!\cdots\!31}$, $\frac{35\!\cdots\!40}{15\!\cdots\!71}a^{29}-\frac{26\!\cdots\!52}{15\!\cdots\!71}a^{28}+\frac{14\!\cdots\!86}{17\!\cdots\!19}a^{27}-\frac{43\!\cdots\!54}{14\!\cdots\!61}a^{26}+\frac{12\!\cdots\!35}{15\!\cdots\!71}a^{25}-\frac{23\!\cdots\!64}{99\!\cdots\!69}a^{24}-\frac{36\!\cdots\!60}{52\!\cdots\!57}a^{23}+\frac{26\!\cdots\!27}{58\!\cdots\!73}a^{22}-\frac{96\!\cdots\!00}{52\!\cdots\!57}a^{21}+\frac{30\!\cdots\!76}{52\!\cdots\!57}a^{20}-\frac{27\!\cdots\!11}{17\!\cdots\!19}a^{19}+\frac{51\!\cdots\!98}{14\!\cdots\!61}a^{18}-\frac{39\!\cdots\!35}{52\!\cdots\!57}a^{17}+\frac{73\!\cdots\!86}{52\!\cdots\!57}a^{16}-\frac{11\!\cdots\!97}{52\!\cdots\!57}a^{15}+\frac{14\!\cdots\!73}{52\!\cdots\!57}a^{14}-\frac{89\!\cdots\!75}{52\!\cdots\!57}a^{13}-\frac{13\!\cdots\!47}{47\!\cdots\!87}a^{12}+\frac{19\!\cdots\!12}{15\!\cdots\!71}a^{11}-\frac{39\!\cdots\!10}{15\!\cdots\!71}a^{10}+\frac{16\!\cdots\!57}{52\!\cdots\!57}a^{9}-\frac{32\!\cdots\!36}{15\!\cdots\!71}a^{8}-\frac{12\!\cdots\!06}{14\!\cdots\!61}a^{7}+\frac{21\!\cdots\!97}{52\!\cdots\!57}a^{6}-\frac{32\!\cdots\!25}{58\!\cdots\!73}a^{5}+\frac{84\!\cdots\!58}{17\!\cdots\!19}a^{4}-\frac{17\!\cdots\!12}{58\!\cdots\!73}a^{3}+\frac{10\!\cdots\!88}{72\!\cdots\!33}a^{2}-\frac{17\!\cdots\!64}{58\!\cdots\!73}a-\frac{38\!\cdots\!54}{22\!\cdots\!93}$, $\frac{22\!\cdots\!97}{22\!\cdots\!01}a^{29}-\frac{22\!\cdots\!13}{22\!\cdots\!01}a^{28}+\frac{14\!\cdots\!91}{24\!\cdots\!89}a^{27}-\frac{54\!\cdots\!97}{22\!\cdots\!01}a^{26}+\frac{16\!\cdots\!48}{22\!\cdots\!01}a^{25}-\frac{92\!\cdots\!28}{74\!\cdots\!67}a^{24}-\frac{13\!\cdots\!55}{67\!\cdots\!97}a^{23}+\frac{22\!\cdots\!72}{82\!\cdots\!63}a^{22}-\frac{10\!\cdots\!80}{74\!\cdots\!67}a^{21}+\frac{37\!\cdots\!38}{74\!\cdots\!67}a^{20}-\frac{37\!\cdots\!31}{24\!\cdots\!89}a^{19}+\frac{78\!\cdots\!08}{20\!\cdots\!91}a^{18}-\frac{66\!\cdots\!26}{74\!\cdots\!67}a^{17}+\frac{13\!\cdots\!13}{74\!\cdots\!67}a^{16}-\frac{24\!\cdots\!45}{74\!\cdots\!67}a^{15}+\frac{37\!\cdots\!33}{74\!\cdots\!67}a^{14}-\frac{43\!\cdots\!65}{74\!\cdots\!67}a^{13}+\frac{23\!\cdots\!10}{74\!\cdots\!67}a^{12}+\frac{16\!\cdots\!10}{22\!\cdots\!01}a^{11}-\frac{62\!\cdots\!94}{22\!\cdots\!01}a^{10}+\frac{40\!\cdots\!19}{74\!\cdots\!67}a^{9}-\frac{15\!\cdots\!89}{22\!\cdots\!01}a^{8}+\frac{11\!\cdots\!82}{22\!\cdots\!01}a^{7}+\frac{79\!\cdots\!60}{74\!\cdots\!67}a^{6}-\frac{72\!\cdots\!91}{82\!\cdots\!63}a^{5}+\frac{33\!\cdots\!87}{24\!\cdots\!89}a^{4}-\frac{92\!\cdots\!95}{75\!\cdots\!33}a^{3}+\frac{63\!\cdots\!35}{83\!\cdots\!37}a^{2}-\frac{22\!\cdots\!83}{82\!\cdots\!63}a+\frac{13\!\cdots\!70}{31\!\cdots\!83}$, $\frac{21\!\cdots\!66}{15\!\cdots\!71}a^{29}-\frac{15\!\cdots\!04}{15\!\cdots\!71}a^{28}+\frac{93\!\cdots\!52}{17\!\cdots\!19}a^{27}-\frac{30\!\cdots\!91}{15\!\cdots\!71}a^{26}+\frac{79\!\cdots\!40}{15\!\cdots\!71}a^{25}-\frac{12\!\cdots\!77}{47\!\cdots\!87}a^{24}-\frac{39\!\cdots\!69}{99\!\cdots\!69}a^{23}+\frac{16\!\cdots\!21}{58\!\cdots\!73}a^{22}-\frac{55\!\cdots\!58}{47\!\cdots\!87}a^{21}+\frac{19\!\cdots\!47}{52\!\cdots\!57}a^{20}-\frac{17\!\cdots\!80}{17\!\cdots\!19}a^{19}+\frac{34\!\cdots\!05}{14\!\cdots\!61}a^{18}-\frac{27\!\cdots\!13}{52\!\cdots\!57}a^{17}+\frac{50\!\cdots\!23}{52\!\cdots\!57}a^{16}-\frac{81\!\cdots\!89}{52\!\cdots\!57}a^{15}+\frac{10\!\cdots\!63}{52\!\cdots\!57}a^{14}-\frac{70\!\cdots\!26}{47\!\cdots\!87}a^{13}-\frac{68\!\cdots\!76}{47\!\cdots\!87}a^{12}+\frac{11\!\cdots\!62}{14\!\cdots\!61}a^{11}-\frac{27\!\cdots\!87}{15\!\cdots\!71}a^{10}+\frac{12\!\cdots\!52}{52\!\cdots\!57}a^{9}-\frac{29\!\cdots\!67}{15\!\cdots\!71}a^{8}-\frac{41\!\cdots\!54}{15\!\cdots\!71}a^{7}+\frac{15\!\cdots\!19}{52\!\cdots\!57}a^{6}-\frac{27\!\cdots\!48}{58\!\cdots\!73}a^{5}+\frac{63\!\cdots\!22}{15\!\cdots\!29}a^{4}-\frac{12\!\cdots\!98}{58\!\cdots\!73}a^{3}+\frac{27\!\cdots\!97}{65\!\cdots\!97}a^{2}+\frac{15\!\cdots\!52}{58\!\cdots\!73}a+\frac{10\!\cdots\!20}{22\!\cdots\!93}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 15542059406474578 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{14}\cdot 15542059406474578 \cdot 7}{2\cdot\sqrt{86618284683850782149418819696007456920853807515055533}}\cr\approx \mathstrut & 110.496867882122 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^30 - 8*x^29 + 43*x^28 - 163*x^27 + 446*x^26 - 385*x^25 - 2817*x^24 + 21864*x^23 - 95826*x^22 + 323313*x^21 - 894891*x^20 + 2178948*x^19 - 4695543*x^18 + 9008829*x^17 - 15016794*x^16 + 20604987*x^15 - 18291717*x^14 - 5218266*x^13 + 65252417*x^12 - 159581317*x^11 + 242005763*x^10 - 224361122*x^9 + 47652991*x^8 + 233622619*x^7 - 454603911*x^6 + 464765022*x^5 - 306287199*x^4 + 111399003*x^3 - 14270364*x^2 - 456489*x - 204363)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^30 - 8*x^29 + 43*x^28 - 163*x^27 + 446*x^26 - 385*x^25 - 2817*x^24 + 21864*x^23 - 95826*x^22 + 323313*x^21 - 894891*x^20 + 2178948*x^19 - 4695543*x^18 + 9008829*x^17 - 15016794*x^16 + 20604987*x^15 - 18291717*x^14 - 5218266*x^13 + 65252417*x^12 - 159581317*x^11 + 242005763*x^10 - 224361122*x^9 + 47652991*x^8 + 233622619*x^7 - 454603911*x^6 + 464765022*x^5 - 306287199*x^4 + 111399003*x^3 - 14270364*x^2 - 456489*x - 204363, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^30 - 8*x^29 + 43*x^28 - 163*x^27 + 446*x^26 - 385*x^25 - 2817*x^24 + 21864*x^23 - 95826*x^22 + 323313*x^21 - 894891*x^20 + 2178948*x^19 - 4695543*x^18 + 9008829*x^17 - 15016794*x^16 + 20604987*x^15 - 18291717*x^14 - 5218266*x^13 + 65252417*x^12 - 159581317*x^11 + 242005763*x^10 - 224361122*x^9 + 47652991*x^8 + 233622619*x^7 - 454603911*x^6 + 464765022*x^5 - 306287199*x^4 + 111399003*x^3 - 14270364*x^2 - 456489*x - 204363);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^30 - 8*x^29 + 43*x^28 - 163*x^27 + 446*x^26 - 385*x^25 - 2817*x^24 + 21864*x^23 - 95826*x^22 + 323313*x^21 - 894891*x^20 + 2178948*x^19 - 4695543*x^18 + 9008829*x^17 - 15016794*x^16 + 20604987*x^15 - 18291717*x^14 - 5218266*x^13 + 65252417*x^12 - 159581317*x^11 + 242005763*x^10 - 224361122*x^9 + 47652991*x^8 + 233622619*x^7 - 454603911*x^6 + 464765022*x^5 - 306287199*x^4 + 111399003*x^3 - 14270364*x^2 - 456489*x - 204363);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$D_{30}$ (as 30T14):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 60
The 18 conjugacy class representatives for $D_{30}$
Character table for $D_{30}$

Intermediate fields

\(\Q(\sqrt{1213}) \), 3.1.3639.1, 5.1.13242321.1, 6.2.16062935373.1, 10.2.212710546411520733.1, 15.1.8450344007000266933623879.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 30 sibling: 30.0.214224941509935982232692876412219596671526317019923.1
Minimal sibling: 30.0.214224941509935982232692876412219596671526317019923.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.10.0.1}{10} }^{3}$ R $30$ $15^{2}$ ${\href{/padicField/11.2.0.1}{2} }^{14}{,}\,{\href{/padicField/11.1.0.1}{1} }^{2}$ $15^{2}$ $30$ ${\href{/padicField/19.5.0.1}{5} }^{6}$ $30$ ${\href{/padicField/29.2.0.1}{2} }^{14}{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ $15^{2}$ ${\href{/padicField/37.2.0.1}{2} }^{15}$ ${\href{/padicField/41.6.0.1}{6} }^{5}$ ${\href{/padicField/43.3.0.1}{3} }^{10}$ $30$ ${\href{/padicField/53.2.0.1}{2} }^{14}{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ ${\href{/padicField/59.10.0.1}{10} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(3\) Copy content Toggle raw display $\Q_{3}$$x + 1$$1$$1$$0$Trivial$[\ ]$
$\Q_{3}$$x + 1$$1$$1$$0$Trivial$[\ ]$
3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
\(1213\) Copy content Toggle raw display Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$

Artin representations

Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
* 1.1.1t1.a.a$1$ $1$ \(\Q\) $C_1$ $1$ $1$
1.3.2t1.a.a$1$ $ 3 $ \(\Q(\sqrt{-3}) \) $C_2$ (as 2T1) $1$ $-1$
1.3639.2t1.a.a$1$ $ 3 \cdot 1213 $ \(\Q(\sqrt{-3639}) \) $C_2$ (as 2T1) $1$ $-1$
* 1.1213.2t1.a.a$1$ $ 1213 $ \(\Q(\sqrt{1213}) \) $C_2$ (as 2T1) $1$ $1$
* 2.3639.6t3.b.a$2$ $ 3 \cdot 1213 $ 6.0.39726963.2 $D_{6}$ (as 6T3) $1$ $0$
* 2.3639.3t2.a.a$2$ $ 3 \cdot 1213 $ 3.1.3639.1 $S_3$ (as 3T2) $1$ $0$
* 2.3639.5t2.a.b$2$ $ 3 \cdot 1213 $ 5.1.13242321.1 $D_{5}$ (as 5T2) $1$ $0$
* 2.3639.5t2.a.a$2$ $ 3 \cdot 1213 $ 5.1.13242321.1 $D_{5}$ (as 5T2) $1$ $0$
* 2.3639.10t3.a.b$2$ $ 3 \cdot 1213 $ 10.0.526077196401123.1 $D_{10}$ (as 10T3) $1$ $0$
* 2.3639.10t3.a.a$2$ $ 3 \cdot 1213 $ 10.0.526077196401123.1 $D_{10}$ (as 10T3) $1$ $0$
* 2.3639.15t2.a.d$2$ $ 3 \cdot 1213 $ 15.1.8450344007000266933623879.1 $D_{15}$ (as 15T2) $1$ $0$
* 2.3639.30t14.a.c$2$ $ 3 \cdot 1213 $ 30.2.86618284683850782149418819696007456920853807515055533.1 $D_{30}$ (as 30T14) $1$ $0$
* 2.3639.15t2.a.c$2$ $ 3 \cdot 1213 $ 15.1.8450344007000266933623879.1 $D_{15}$ (as 15T2) $1$ $0$
* 2.3639.30t14.a.d$2$ $ 3 \cdot 1213 $ 30.2.86618284683850782149418819696007456920853807515055533.1 $D_{30}$ (as 30T14) $1$ $0$
* 2.3639.15t2.a.b$2$ $ 3 \cdot 1213 $ 15.1.8450344007000266933623879.1 $D_{15}$ (as 15T2) $1$ $0$
* 2.3639.30t14.a.b$2$ $ 3 \cdot 1213 $ 30.2.86618284683850782149418819696007456920853807515055533.1 $D_{30}$ (as 30T14) $1$ $0$
* 2.3639.15t2.a.a$2$ $ 3 \cdot 1213 $ 15.1.8450344007000266933623879.1 $D_{15}$ (as 15T2) $1$ $0$
* 2.3639.30t14.a.a$2$ $ 3 \cdot 1213 $ 30.2.86618284683850782149418819696007456920853807515055533.1 $D_{30}$ (as 30T14) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.