Normalized defining polynomial
\( x^{30} - 9 x^{29} + 29 x^{28} - 62 x^{27} + 140 x^{26} - 289 x^{25} + 749 x^{24} - 2505 x^{23} + 6556 x^{22} - 13979 x^{21} + 24020 x^{20} - 33363 x^{19} + 38542 x^{18} - 41923 x^{17} + 47672 x^{16} - 60161 x^{15} + 70650 x^{14} - 64907 x^{13} + 32243 x^{12} + 11892 x^{11} - 39347 x^{10} + 39493 x^{9} - 24068 x^{8} + 9526 x^{7} + 164 x^{6} - 4686 x^{5} + 4431 x^{4} - 2269 x^{3} + 729 x^{2} - 213 x + 43 \)
Invariants
Degree: | $30$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[2, 14]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(812804153180660145912426894477473567856769041137\)\(\medspace = 17^{15}\cdot 127^{14}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $39.54$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $17, 127$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $2$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $\frac{1}{17} a^{23} - \frac{4}{17} a^{22} + \frac{1}{17} a^{21} + \frac{6}{17} a^{20} - \frac{4}{17} a^{19} - \frac{8}{17} a^{18} - \frac{8}{17} a^{17} - \frac{7}{17} a^{16} - \frac{3}{17} a^{15} + \frac{8}{17} a^{14} + \frac{6}{17} a^{13} + \frac{1}{17} a^{12} - \frac{5}{17} a^{11} + \frac{5}{17} a^{10} + \frac{3}{17} a^{9} + \frac{8}{17} a^{8} - \frac{4}{17} a^{7} + \frac{1}{17} a^{6} + \frac{3}{17} a^{5} - \frac{4}{17} a^{4} - \frac{2}{17} a^{3} - \frac{2}{17} a^{2} - \frac{5}{17} a - \frac{4}{17}$, $\frac{1}{17} a^{24} + \frac{2}{17} a^{22} - \frac{7}{17} a^{21} + \frac{3}{17} a^{20} - \frac{7}{17} a^{19} - \frac{6}{17} a^{18} - \frac{5}{17} a^{17} + \frac{3}{17} a^{16} - \frac{4}{17} a^{15} + \frac{4}{17} a^{14} + \frac{8}{17} a^{13} - \frac{1}{17} a^{12} + \frac{2}{17} a^{11} + \frac{6}{17} a^{10} + \frac{3}{17} a^{9} - \frac{6}{17} a^{8} + \frac{2}{17} a^{7} + \frac{7}{17} a^{6} + \frac{8}{17} a^{5} - \frac{1}{17} a^{4} + \frac{7}{17} a^{3} + \frac{4}{17} a^{2} - \frac{7}{17} a + \frac{1}{17}$, $\frac{1}{17} a^{25} + \frac{1}{17} a^{22} + \frac{1}{17} a^{21} - \frac{2}{17} a^{20} + \frac{2}{17} a^{19} - \frac{6}{17} a^{18} + \frac{2}{17} a^{17} - \frac{7}{17} a^{16} - \frac{7}{17} a^{15} - \frac{8}{17} a^{14} + \frac{4}{17} a^{13} - \frac{1}{17} a^{11} - \frac{7}{17} a^{10} + \frac{5}{17} a^{9} + \frac{3}{17} a^{8} - \frac{2}{17} a^{7} + \frac{6}{17} a^{6} - \frac{7}{17} a^{5} - \frac{2}{17} a^{4} + \frac{8}{17} a^{3} - \frac{3}{17} a^{2} - \frac{6}{17} a + \frac{8}{17}$, $\frac{1}{17} a^{26} + \frac{5}{17} a^{22} - \frac{3}{17} a^{21} - \frac{4}{17} a^{20} - \frac{2}{17} a^{19} - \frac{7}{17} a^{18} + \frac{1}{17} a^{17} - \frac{5}{17} a^{15} - \frac{4}{17} a^{14} - \frac{6}{17} a^{13} - \frac{2}{17} a^{12} - \frac{2}{17} a^{11} + \frac{7}{17} a^{8} - \frac{7}{17} a^{7} - \frac{8}{17} a^{6} - \frac{5}{17} a^{5} - \frac{5}{17} a^{4} - \frac{1}{17} a^{3} - \frac{4}{17} a^{2} - \frac{4}{17} a + \frac{4}{17}$, $\frac{1}{731} a^{27} - \frac{16}{731} a^{26} - \frac{9}{731} a^{25} + \frac{16}{731} a^{24} + \frac{21}{731} a^{23} + \frac{182}{731} a^{22} + \frac{262}{731} a^{21} + \frac{105}{731} a^{20} + \frac{205}{731} a^{19} + \frac{232}{731} a^{18} + \frac{81}{731} a^{17} - \frac{74}{731} a^{16} - \frac{262}{731} a^{15} + \frac{50}{731} a^{14} - \frac{177}{731} a^{13} - \frac{208}{731} a^{12} - \frac{126}{731} a^{11} + \frac{256}{731} a^{10} - \frac{282}{731} a^{9} + \frac{260}{731} a^{8} + \frac{141}{731} a^{7} - \frac{143}{731} a^{6} + \frac{76}{731} a^{5} - \frac{4}{43} a^{4} - \frac{31}{731} a^{3} + \frac{15}{43} a^{2} + \frac{185}{731} a + \frac{6}{17}$, $\frac{1}{13211363} a^{28} - \frac{4584}{13211363} a^{27} + \frac{230029}{13211363} a^{26} - \frac{224053}{13211363} a^{25} + \frac{150533}{13211363} a^{24} + \frac{321612}{13211363} a^{23} - \frac{587863}{13211363} a^{22} + \frac{1078806}{13211363} a^{21} + \frac{5447513}{13211363} a^{20} - \frac{22515}{777139} a^{19} - \frac{3744787}{13211363} a^{18} + \frac{855246}{13211363} a^{17} - \frac{218220}{13211363} a^{16} + \frac{753493}{13211363} a^{15} + \frac{6070708}{13211363} a^{14} + \frac{3632482}{13211363} a^{13} + \frac{5541902}{13211363} a^{12} - \frac{5428309}{13211363} a^{11} - \frac{159675}{1201033} a^{10} - \frac{6234543}{13211363} a^{9} + \frac{4886985}{13211363} a^{8} + \frac{2383270}{13211363} a^{7} - \frac{2830001}{13211363} a^{6} - \frac{1389857}{13211363} a^{5} + \frac{1658084}{13211363} a^{4} + \frac{4053788}{13211363} a^{3} - \frac{152407}{307241} a^{2} + \frac{5228240}{13211363} a + \frac{92439}{307241}$, $\frac{1}{77528033104658552131978365575348266293887288354096441119} a^{29} - \frac{43493096884567073061339517291680381938346542343}{2500904293698662971999302115333815041738299624325691649} a^{28} - \frac{41134854391956217930969611178637895686954856832984989}{77528033104658552131978365575348266293887288354096441119} a^{27} + \frac{797547298324061351668122840606341776974281280216595}{1802977514061826793766938734310424797532262519862707933} a^{26} - \frac{36648611719654118166731074765920001190227220395584473}{77528033104658552131978365575348266293887288354096441119} a^{25} + \frac{1899133090779078746246544108984613759714078280935516619}{77528033104658552131978365575348266293887288354096441119} a^{24} - \frac{1618406002595107547078174620457730853509635823342555337}{77528033104658552131978365575348266293887288354096441119} a^{23} + \frac{2726303914587532719598230957542448917718412229897243321}{7048003009514413830179851415940751481262480759463312829} a^{22} - \frac{36905329668401280365456527356745650442702171911602212023}{77528033104658552131978365575348266293887288354096441119} a^{21} + \frac{29996873564654728446933241932285047055936219736537147760}{77528033104658552131978365575348266293887288354096441119} a^{20} + \frac{27993945681019497999200822435787272516559497203352392897}{77528033104658552131978365575348266293887288354096441119} a^{19} + \frac{36450863037083159156345470060212555214215192338191759986}{77528033104658552131978365575348266293887288354096441119} a^{18} + \frac{85125456085411578070375924129814173036273505649502087}{1314034459400992409016582467378784174472665904306719341} a^{17} + \frac{25770375848887801259346889396059970287197846610811553490}{77528033104658552131978365575348266293887288354096441119} a^{16} + \frac{27819217288121362210762267422093128437471863224128615789}{77528033104658552131978365575348266293887288354096441119} a^{15} - \frac{33562278556180081184992297071568123246058733233907577000}{77528033104658552131978365575348266293887288354096441119} a^{14} - \frac{11533454954500265494527105383516796965428449537488567401}{77528033104658552131978365575348266293887288354096441119} a^{13} + \frac{6044505540441010888142767597022347169733274111587643038}{77528033104658552131978365575348266293887288354096441119} a^{12} + \frac{23787397549972769853964484827451727318451052814357447196}{77528033104658552131978365575348266293887288354096441119} a^{11} - \frac{16055280724523740901824533134369716843999031679896770475}{77528033104658552131978365575348266293887288354096441119} a^{10} + \frac{35557818671259391126026403653622764254671652274617392519}{77528033104658552131978365575348266293887288354096441119} a^{9} - \frac{1727528027393125187907593849518118716750811578338244474}{7048003009514413830179851415940751481262480759463312829} a^{8} - \frac{353013786473038556918403678786055313026477962359385152}{4560472535568150125410492092667545076111016962005673007} a^{7} + \frac{31573958510583113212824552235310745801830274409425668771}{77528033104658552131978365575348266293887288354096441119} a^{6} + \frac{2180604334324365311201276261612627444898660620422279006}{7048003009514413830179851415940751481262480759463312829} a^{5} - \frac{19491739444676403404551890971521553039709444259918397459}{77528033104658552131978365575348266293887288354096441119} a^{4} - \frac{21232902572475854477221806084462012814758667648264808283}{77528033104658552131978365575348266293887288354096441119} a^{3} - \frac{22423380878538661216874801276731877951705853128581680043}{77528033104658552131978365575348266293887288354096441119} a^{2} + \frac{19025311579055495145257179482013036808677158847391881903}{77528033104658552131978365575348266293887288354096441119} a - \frac{477813529240900248330406819468169912470486240776024240}{1802977514061826793766938734310424797532262519862707933}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $15$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 1232398776399.036 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A solvable group of order 60 |
The 18 conjugacy class representatives for $D_{30}$ |
Character table for $D_{30}$ |
Intermediate fields
\(\Q(\sqrt{17}) \), 3.1.2159.1, 5.1.4661281.1, 6.2.79241777.1, 10.2.369368189536337.2, 15.1.218659573334046061397519.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | $15^{2}$ | $30$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{5}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{3}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{15}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{6}$ | R | $15^{2}$ | $30$ | $30$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{15}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{15}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{15}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{14}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{6}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{14}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{14}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
$17$ | 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
$127$ | $\Q_{127}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{127}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
127.2.1.2 | $x^{2} + 1143$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
127.2.1.2 | $x^{2} + 1143$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
127.2.1.2 | $x^{2} + 1143$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
127.2.1.2 | $x^{2} + 1143$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
127.2.1.2 | $x^{2} + 1143$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
127.2.1.2 | $x^{2} + 1143$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
127.2.1.2 | $x^{2} + 1143$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
127.2.1.2 | $x^{2} + 1143$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
127.2.1.2 | $x^{2} + 1143$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
127.2.1.2 | $x^{2} + 1143$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
127.2.1.2 | $x^{2} + 1143$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
127.2.1.2 | $x^{2} + 1143$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
127.2.1.2 | $x^{2} + 1143$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
127.2.1.2 | $x^{2} + 1143$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
1.127.2t1.a.a | $1$ | $ 127 $ | \(\Q(\sqrt{-127}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
1.2159.2t1.a.a | $1$ | $ 17 \cdot 127 $ | \(\Q(\sqrt{-2159}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
* | 1.17.2t1.a.a | $1$ | $ 17 $ | \(\Q(\sqrt{17}) \) | $C_2$ (as 2T1) | $1$ | $1$ |
* | 2.2159.6t3.a.a | $2$ | $ 17 \cdot 127 $ | 6.0.591982687.1 | $D_{6}$ (as 6T3) | $1$ | $0$ |
* | 2.2159.3t2.a.a | $2$ | $ 17 \cdot 127 $ | 3.1.2159.1 | $S_3$ (as 3T2) | $1$ | $0$ |
* | 2.2159.5t2.a.b | $2$ | $ 17 \cdot 127 $ | 5.1.4661281.1 | $D_{5}$ (as 5T2) | $1$ | $0$ |
* | 2.2159.5t2.a.a | $2$ | $ 17 \cdot 127 $ | 5.1.4661281.1 | $D_{5}$ (as 5T2) | $1$ | $0$ |
* | 2.2159.10t3.b.b | $2$ | $ 17 \cdot 127 $ | 10.0.2759397651242047.1 | $D_{10}$ (as 10T3) | $1$ | $0$ |
* | 2.2159.10t3.b.a | $2$ | $ 17 \cdot 127 $ | 10.0.2759397651242047.1 | $D_{10}$ (as 10T3) | $1$ | $0$ |
* | 2.2159.15t2.a.d | $2$ | $ 17 \cdot 127 $ | 15.1.218659573334046061397519.1 | $D_{15}$ (as 15T2) | $1$ | $0$ |
* | 2.2159.30t14.b.a | $2$ | $ 17 \cdot 127 $ | 30.2.812804153180660145912426894477473567856769041137.1 | $D_{30}$ (as 30T14) | $1$ | $0$ |
* | 2.2159.15t2.a.b | $2$ | $ 17 \cdot 127 $ | 15.1.218659573334046061397519.1 | $D_{15}$ (as 15T2) | $1$ | $0$ |
* | 2.2159.30t14.b.c | $2$ | $ 17 \cdot 127 $ | 30.2.812804153180660145912426894477473567856769041137.1 | $D_{30}$ (as 30T14) | $1$ | $0$ |
* | 2.2159.15t2.a.a | $2$ | $ 17 \cdot 127 $ | 15.1.218659573334046061397519.1 | $D_{15}$ (as 15T2) | $1$ | $0$ |
* | 2.2159.30t14.b.b | $2$ | $ 17 \cdot 127 $ | 30.2.812804153180660145912426894477473567856769041137.1 | $D_{30}$ (as 30T14) | $1$ | $0$ |
* | 2.2159.15t2.a.c | $2$ | $ 17 \cdot 127 $ | 15.1.218659573334046061397519.1 | $D_{15}$ (as 15T2) | $1$ | $0$ |
* | 2.2159.30t14.b.d | $2$ | $ 17 \cdot 127 $ | 30.2.812804153180660145912426894477473567856769041137.1 | $D_{30}$ (as 30T14) | $1$ | $0$ |