Normalized defining polynomial
\( x^{30} - 16 x^{28} + 152 x^{26} - 960 x^{24} + 4656 x^{22} - 18272 x^{20} + 59264 x^{18} - 161280 x^{16} + 368896 x^{14} - 701952 x^{12} + 1121280 x^{10} - 1376256 x^{8} + 1417216 x^{6} - 884736 x^{4} + 524288 x^{2} - 32768 \)
Invariants
Degree: | $30$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[2, 14]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(69810446891843341455650582518642209772915392512\)\(\medspace = 2^{45}\cdot 239^{14}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $36.43$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $2, 239$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $2$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{4} a^{5}$, $\frac{1}{8} a^{6}$, $\frac{1}{8} a^{7}$, $\frac{1}{16} a^{8}$, $\frac{1}{16} a^{9}$, $\frac{1}{32} a^{10}$, $\frac{1}{32} a^{11}$, $\frac{1}{64} a^{12}$, $\frac{1}{64} a^{13}$, $\frac{1}{128} a^{14}$, $\frac{1}{128} a^{15}$, $\frac{1}{256} a^{16}$, $\frac{1}{256} a^{17}$, $\frac{1}{512} a^{18}$, $\frac{1}{512} a^{19}$, $\frac{1}{1024} a^{20}$, $\frac{1}{1024} a^{21}$, $\frac{1}{2048} a^{22}$, $\frac{1}{2048} a^{23}$, $\frac{1}{53248} a^{24} - \frac{3}{13312} a^{22} - \frac{3}{3328} a^{18} - \frac{1}{1664} a^{16} - \frac{3}{1664} a^{14} + \frac{1}{416} a^{12} - \frac{1}{208} a^{10} + \frac{3}{208} a^{8} - \frac{3}{52} a^{6} - \frac{3}{52} a^{4} + \frac{1}{13} a^{2} + \frac{4}{13}$, $\frac{1}{53248} a^{25} - \frac{3}{13312} a^{23} - \frac{3}{3328} a^{19} - \frac{1}{1664} a^{17} - \frac{3}{1664} a^{15} + \frac{1}{416} a^{13} - \frac{1}{208} a^{11} + \frac{3}{208} a^{9} - \frac{3}{52} a^{7} - \frac{3}{52} a^{5} + \frac{1}{13} a^{3} + \frac{4}{13} a$, $\frac{1}{106496} a^{26} + \frac{3}{26624} a^{22} - \frac{3}{6656} a^{20} + \frac{1}{6656} a^{18} - \frac{1}{1664} a^{16} - \frac{3}{1664} a^{14} - \frac{3}{832} a^{12} + \frac{1}{104} a^{10} - \frac{1}{208} a^{8} - \frac{3}{52} a^{4} + \frac{3}{26} a^{2} - \frac{2}{13}$, $\frac{1}{106496} a^{27} + \frac{3}{26624} a^{23} - \frac{3}{6656} a^{21} + \frac{1}{6656} a^{19} - \frac{1}{1664} a^{17} - \frac{3}{1664} a^{15} - \frac{3}{832} a^{13} + \frac{1}{104} a^{11} - \frac{1}{208} a^{9} - \frac{3}{52} a^{5} + \frac{3}{26} a^{3} - \frac{2}{13} a$, $\frac{1}{86189756563456} a^{28} - \frac{8108245}{3314990637056} a^{26} - \frac{4714025}{1346714946304} a^{24} + \frac{880718637}{10773719570432} a^{22} - \frac{1173121429}{5386859785216} a^{20} + \frac{6714797}{24048481184} a^{18} - \frac{26681021}{336678736576} a^{16} + \frac{1772222793}{673357473152} a^{14} + \frac{46550033}{6474591088} a^{12} - \frac{153683449}{12024240592} a^{10} + \frac{148716655}{10521210518} a^{8} + \frac{682269079}{21042421036} a^{6} - \frac{402203244}{5260605259} a^{4} + \frac{418113485}{5260605259} a^{2} + \frac{2115234932}{5260605259}$, $\frac{1}{86189756563456} a^{29} - \frac{8108245}{3314990637056} a^{27} - \frac{4714025}{1346714946304} a^{25} + \frac{880718637}{10773719570432} a^{23} - \frac{1173121429}{5386859785216} a^{21} + \frac{6714797}{24048481184} a^{19} - \frac{26681021}{336678736576} a^{17} + \frac{1772222793}{673357473152} a^{15} + \frac{46550033}{6474591088} a^{13} - \frac{153683449}{12024240592} a^{11} + \frac{148716655}{10521210518} a^{9} + \frac{682269079}{21042421036} a^{7} - \frac{402203244}{5260605259} a^{5} + \frac{418113485}{5260605259} a^{3} + \frac{2115234932}{5260605259} a$
Class group and class number
not computed
Unit group
Rank: | $15$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | not computed | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | not computed | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A solvable group of order 60 |
The 18 conjugacy class representatives for $D_{30}$ |
Character table for $D_{30}$ |
Intermediate fields
\(\Q(\sqrt{2}) \), 3.1.239.1, 5.1.57121.1, 6.2.29245952.1, 10.2.106915713548288.1, 15.1.44543599279432079.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{3}$ | $30$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{14}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | $30$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{15}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{10}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{15}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{14}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | $30$ | $15^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{15}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{14}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{15}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{14}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{15}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{15}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
2 | Data not computed | ||||||
239 | Data not computed |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
1.1912.2t1.b.a | $1$ | $ 2^{3} \cdot 239 $ | \(\Q(\sqrt{-478}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
1.239.2t1.a.a | $1$ | $ 239 $ | \(\Q(\sqrt{-239}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
* | 1.8.2t1.a.a | $1$ | $ 2^{3}$ | \(\Q(\sqrt{2}) \) | $C_2$ (as 2T1) | $1$ | $1$ |
* | 2.15296.6t3.a.a | $2$ | $ 2^{6} \cdot 239 $ | 6.0.6989782528.1 | $D_{6}$ (as 6T3) | $1$ | $0$ |
* | 2.239.3t2.a.a | $2$ | $ 239 $ | 3.1.239.1 | $S_3$ (as 3T2) | $1$ | $0$ |
* | 2.239.5t2.a.a | $2$ | $ 239 $ | 5.1.57121.1 | $D_{5}$ (as 5T2) | $1$ | $0$ |
* | 2.239.5t2.a.b | $2$ | $ 239 $ | 5.1.57121.1 | $D_{5}$ (as 5T2) | $1$ | $0$ |
* | 2.15296.10t3.a.a | $2$ | $ 2^{6} \cdot 239 $ | 10.0.25552855538040832.1 | $D_{10}$ (as 10T3) | $1$ | $0$ |
* | 2.15296.10t3.a.b | $2$ | $ 2^{6} \cdot 239 $ | 10.0.25552855538040832.1 | $D_{10}$ (as 10T3) | $1$ | $0$ |
* | 2.239.15t2.a.b | $2$ | $ 239 $ | 15.1.44543599279432079.1 | $D_{15}$ (as 15T2) | $1$ | $0$ |
* | 2.15296.30t14.a.b | $2$ | $ 2^{6} \cdot 239 $ | 30.2.69810446891843341455650582518642209772915392512.1 | $D_{30}$ (as 30T14) | $1$ | $0$ |
* | 2.239.15t2.a.d | $2$ | $ 239 $ | 15.1.44543599279432079.1 | $D_{15}$ (as 15T2) | $1$ | $0$ |
* | 2.15296.30t14.a.a | $2$ | $ 2^{6} \cdot 239 $ | 30.2.69810446891843341455650582518642209772915392512.1 | $D_{30}$ (as 30T14) | $1$ | $0$ |
* | 2.239.15t2.a.c | $2$ | $ 239 $ | 15.1.44543599279432079.1 | $D_{15}$ (as 15T2) | $1$ | $0$ |
* | 2.15296.30t14.a.d | $2$ | $ 2^{6} \cdot 239 $ | 30.2.69810446891843341455650582518642209772915392512.1 | $D_{30}$ (as 30T14) | $1$ | $0$ |
* | 2.239.15t2.a.a | $2$ | $ 239 $ | 15.1.44543599279432079.1 | $D_{15}$ (as 15T2) | $1$ | $0$ |
* | 2.15296.30t14.a.c | $2$ | $ 2^{6} \cdot 239 $ | 30.2.69810446891843341455650582518642209772915392512.1 | $D_{30}$ (as 30T14) | $1$ | $0$ |