Normalized defining polynomial
\(x^{30} - 4 x^{29} - 4 x^{28} + 32 x^{27} + 29 x^{26} - 207 x^{25} - 80 x^{24} + 808 x^{23} + 324 x^{22} - 2807 x^{21} - 784 x^{20} + 6744 x^{19} + 2549 x^{18} - 11743 x^{17} - 5231 x^{16} + 15441 x^{15} + 10445 x^{14} - 10233 x^{13} - 7776 x^{12} + 6706 x^{11} + 5598 x^{10} - 2410 x^{9} - 2278 x^{8} + 1045 x^{7} + 940 x^{6} - 185 x^{5} - 176 x^{4} + 44 x^{3} + 30 x^{2} - 6 x - 1\)
Invariants
Degree: | $30$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[2, 14]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(60550910545856385116788597847358428955078125\)\(\medspace = 5^{15}\cdot 239^{14}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $28.80$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $5, 239$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $2$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $\frac{1}{7} a^{24} - \frac{2}{7} a^{23} + \frac{3}{7} a^{22} + \frac{3}{7} a^{21} + \frac{2}{7} a^{20} - \frac{3}{7} a^{19} - \frac{2}{7} a^{18} + \frac{1}{7} a^{17} - \frac{3}{7} a^{16} - \frac{3}{7} a^{15} - \frac{2}{7} a^{14} - \frac{1}{7} a^{13} - \frac{3}{7} a^{12} - \frac{1}{7} a^{11} + \frac{2}{7} a^{9} - \frac{3}{7} a^{8} + \frac{1}{7} a^{6} + \frac{3}{7} a^{5} - \frac{1}{7} a^{4} + \frac{1}{7} a^{3} + \frac{1}{7} a^{2} - \frac{2}{7} a + \frac{1}{7}$, $\frac{1}{7} a^{25} - \frac{1}{7} a^{23} + \frac{2}{7} a^{22} + \frac{1}{7} a^{21} + \frac{1}{7} a^{20} - \frac{1}{7} a^{19} - \frac{3}{7} a^{18} - \frac{1}{7} a^{17} - \frac{2}{7} a^{16} - \frac{1}{7} a^{15} + \frac{2}{7} a^{14} + \frac{2}{7} a^{13} - \frac{2}{7} a^{11} + \frac{2}{7} a^{10} + \frac{1}{7} a^{9} + \frac{1}{7} a^{8} + \frac{1}{7} a^{7} - \frac{2}{7} a^{6} - \frac{2}{7} a^{5} - \frac{1}{7} a^{4} + \frac{3}{7} a^{3} - \frac{3}{7} a + \frac{2}{7}$, $\frac{1}{91} a^{26} + \frac{4}{91} a^{25} - \frac{5}{91} a^{24} + \frac{1}{7} a^{23} - \frac{17}{91} a^{22} + \frac{1}{13} a^{21} + \frac{37}{91} a^{20} + \frac{40}{91} a^{19} + \frac{16}{91} a^{18} - \frac{17}{91} a^{17} - \frac{3}{7} a^{16} + \frac{38}{91} a^{15} + \frac{32}{91} a^{14} - \frac{37}{91} a^{13} + \frac{24}{91} a^{12} + \frac{5}{91} a^{11} + \frac{30}{91} a^{10} + \frac{32}{91} a^{9} + \frac{24}{91} a^{8} - \frac{40}{91} a^{7} - \frac{1}{13} a^{6} - \frac{1}{13} a^{5} - \frac{25}{91} a^{4} + \frac{22}{91} a^{3} + \frac{2}{13} a^{2} + \frac{19}{91} a - \frac{10}{91}$, $\frac{1}{91} a^{27} + \frac{5}{91} a^{25} - \frac{6}{91} a^{24} - \frac{17}{91} a^{23} + \frac{10}{91} a^{22} + \frac{9}{91} a^{21} + \frac{22}{91} a^{20} + \frac{38}{91} a^{19} + \frac{10}{91} a^{18} - \frac{36}{91} a^{17} - \frac{2}{13} a^{16} - \frac{29}{91} a^{15} - \frac{5}{13} a^{14} - \frac{10}{91} a^{13} + \frac{2}{7} a^{12} - \frac{3}{91} a^{11} - \frac{36}{91} a^{10} + \frac{2}{7} a^{9} + \frac{1}{13} a^{8} - \frac{3}{91} a^{7} + \frac{3}{13} a^{6} + \frac{16}{91} a^{5} + \frac{44}{91} a^{4} - \frac{5}{13} a^{3} + \frac{15}{91} a^{2} + \frac{5}{91} a - \frac{38}{91}$, $\frac{1}{14676773839} a^{28} + \frac{3707215}{14676773839} a^{27} - \frac{6303146}{2096681977} a^{26} - \frac{981496800}{14676773839} a^{25} + \frac{555778896}{14676773839} a^{24} + \frac{6249378762}{14676773839} a^{23} + \frac{1781905890}{14676773839} a^{22} - \frac{3354810841}{14676773839} a^{21} - \frac{313809588}{772461781} a^{20} + \frac{5130237142}{14676773839} a^{19} + \frac{2122701111}{14676773839} a^{18} + \frac{5849101380}{14676773839} a^{17} - \frac{6851951881}{14676773839} a^{16} + \frac{5459439599}{14676773839} a^{15} + \frac{4499370672}{14676773839} a^{14} + \frac{377439652}{1128982603} a^{13} + \frac{4334058208}{14676773839} a^{12} - \frac{13751700}{84836843} a^{11} + \frac{50944304}{110351683} a^{10} + \frac{1029226629}{2096681977} a^{9} - \frac{579245126}{14676773839} a^{8} + \frac{2131576129}{14676773839} a^{7} + \frac{3122865965}{14676773839} a^{6} + \frac{5744248316}{14676773839} a^{5} + \frac{834951158}{14676773839} a^{4} - \frac{409863199}{1128982603} a^{3} + \frac{6701117463}{14676773839} a^{2} - \frac{2631267697}{14676773839} a - \frac{6162129166}{14676773839}$, $\frac{1}{5326004272701994741133641125737739123181} a^{29} - \frac{21100556403623109705330858439}{5326004272701994741133641125737739123181} a^{28} + \frac{163401106993758781968293063828526751}{33080771880136613298966715066694031821} a^{27} - \frac{26152778473005008545220673223843016808}{5326004272701994741133641125737739123181} a^{26} - \frac{77435642835076243374634294616616270689}{5326004272701994741133641125737739123181} a^{25} - \frac{344549216750484713945858659693140443585}{5326004272701994741133641125737739123181} a^{24} + \frac{1205423290308603668481270779601834116814}{5326004272701994741133641125737739123181} a^{23} - \frac{2654010275795164745486181288809238691016}{5326004272701994741133641125737739123181} a^{22} - \frac{273144677527698097100755949383043684163}{760857753243142105876234446533962731883} a^{21} - \frac{603921414483900151882515712298086429497}{5326004272701994741133641125737739123181} a^{20} + \frac{6029008943849748856391879935878526993}{409692636361691903164126240441364547937} a^{19} + \frac{1930815325331553740873696942985825068786}{5326004272701994741133641125737739123181} a^{18} + \frac{651092922992269447579773757936042335256}{5326004272701994741133641125737739123181} a^{17} + \frac{1525005027811712548561237095259968561133}{5326004272701994741133641125737739123181} a^{16} - \frac{1848765118466910092793325891156547721648}{5326004272701994741133641125737739123181} a^{15} - \frac{51614849592237624252288018398566417776}{5326004272701994741133641125737739123181} a^{14} + \frac{995883015125920160740347168455393108026}{5326004272701994741133641125737739123181} a^{13} + \frac{2201756860991824293017811156334268056830}{5326004272701994741133641125737739123181} a^{12} + \frac{85450538084609085705406503582973650945}{409692636361691903164126240441364547937} a^{11} + \frac{143664359107704026888665141670645463429}{760857753243142105876234446533962731883} a^{10} + \frac{1134710825240496170850810996007580056803}{5326004272701994741133641125737739123181} a^{9} + \frac{694461040099171528415900634320762156669}{5326004272701994741133641125737739123181} a^{8} + \frac{1574720138595661006722107605254823174450}{5326004272701994741133641125737739123181} a^{7} - \frac{9514221983782318645519655055625031446}{40045144907533795046117602449155933257} a^{6} - \frac{2270856784560219610689362836788719342240}{5326004272701994741133641125737739123181} a^{5} + \frac{1269044698310704865126226151433776627600}{5326004272701994741133641125737739123181} a^{4} - \frac{1304258640655892062904837203073106596912}{5326004272701994741133641125737739123181} a^{3} - \frac{2058240917031049936995578313354674432747}{5326004272701994741133641125737739123181} a^{2} + \frac{2561441189281033997854680796076099350644}{5326004272701994741133641125737739123181} a - \frac{1535409928942451191968477654787877446630}{5326004272701994741133641125737739123181}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $15$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) ![]() | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 5581738694.683278 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A solvable group of order 60 |
The 18 conjugacy class representatives for $D_{30}$ |
Character table for $D_{30}$ |
Intermediate fields
\(\Q(\sqrt{5}) \), 3.1.239.1, 5.1.57121.1, 6.2.7140125.1, 10.2.10196277003125.1, 15.1.44543599279432079.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | $30$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{3}$ | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{15}$ | $15^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{15}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{5}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{14}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{15}$ | $15^{2}$ | $15^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{15}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{14}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{15}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{15}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{15}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{14}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
5 | Data not computed | ||||||
239 | Data not computed |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
1.1195.2t1.a.a | $1$ | $ 5 \cdot 239 $ | \(\Q(\sqrt{-1195}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
1.239.2t1.a.a | $1$ | $ 239 $ | \(\Q(\sqrt{-239}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
* | 1.5.2t1.a.a | $1$ | $ 5 $ | \(\Q(\sqrt{5}) \) | $C_2$ (as 2T1) | $1$ | $1$ |
* | 2.5975.6t3.a.a | $2$ | $ 5^{2} \cdot 239 $ | 6.0.1706489875.1 | $D_{6}$ (as 6T3) | $1$ | $0$ |
* | 2.239.3t2.a.a | $2$ | $ 239 $ | 3.1.239.1 | $S_3$ (as 3T2) | $1$ | $0$ |
* | 2.239.5t2.a.b | $2$ | $ 239 $ | 5.1.57121.1 | $D_{5}$ (as 5T2) | $1$ | $0$ |
* | 2.239.5t2.a.a | $2$ | $ 239 $ | 5.1.57121.1 | $D_{5}$ (as 5T2) | $1$ | $0$ |
* | 2.5975.10t3.a.b | $2$ | $ 5^{2} \cdot 239 $ | 10.0.2436910203746875.1 | $D_{10}$ (as 10T3) | $1$ | $0$ |
* | 2.5975.10t3.a.a | $2$ | $ 5^{2} \cdot 239 $ | 10.0.2436910203746875.1 | $D_{10}$ (as 10T3) | $1$ | $0$ |
* | 2.239.15t2.a.c | $2$ | $ 239 $ | 15.1.44543599279432079.1 | $D_{15}$ (as 15T2) | $1$ | $0$ |
* | 2.5975.30t14.a.a | $2$ | $ 5^{2} \cdot 239 $ | 30.2.60550910545856385116788597847358428955078125.1 | $D_{30}$ (as 30T14) | $1$ | $0$ |
* | 2.239.15t2.a.a | $2$ | $ 239 $ | 15.1.44543599279432079.1 | $D_{15}$ (as 15T2) | $1$ | $0$ |
* | 2.5975.30t14.a.c | $2$ | $ 5^{2} \cdot 239 $ | 30.2.60550910545856385116788597847358428955078125.1 | $D_{30}$ (as 30T14) | $1$ | $0$ |
* | 2.239.15t2.a.d | $2$ | $ 239 $ | 15.1.44543599279432079.1 | $D_{15}$ (as 15T2) | $1$ | $0$ |
* | 2.5975.30t14.a.d | $2$ | $ 5^{2} \cdot 239 $ | 30.2.60550910545856385116788597847358428955078125.1 | $D_{30}$ (as 30T14) | $1$ | $0$ |
* | 2.239.15t2.a.b | $2$ | $ 239 $ | 15.1.44543599279432079.1 | $D_{15}$ (as 15T2) | $1$ | $0$ |
* | 2.5975.30t14.a.b | $2$ | $ 5^{2} \cdot 239 $ | 30.2.60550910545856385116788597847358428955078125.1 | $D_{30}$ (as 30T14) | $1$ | $0$ |