Normalized defining polynomial
\( x^{30} - 5 x^{29} + 2 x^{28} + 21 x^{27} + 40 x^{26} - 46 x^{25} + 39 x^{24} - 296 x^{23} - 1612 x^{22} - 2561 x^{21} + 962 x^{20} + 4669 x^{19} + 19325 x^{18} + 55780 x^{17} + 98099 x^{16} + 110152 x^{15} + 94739 x^{14} + 50734 x^{13} + 40862 x^{12} + 44242 x^{11} + 25838 x^{10} + 20656 x^{9} + 3131 x^{8} + 2527 x^{7} + 6736 x^{6} + 1305 x^{5} + 3768 x^{4} - 512 x^{3} + 661 x^{2} - 25 x - 1 \)
Invariants
Degree: | $30$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[2, 14]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(553999258054841955537532525076904905639678955078125\)\(\medspace = 5^{15}\cdot 751^{14}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $49.14$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $5, 751$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $2$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} - \frac{1}{3}$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{3}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{4}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{5}$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{6}$, $\frac{1}{9} a^{15} - \frac{1}{9} a^{14} + \frac{1}{9} a^{13} - \frac{1}{9} a^{12} + \frac{1}{9} a^{11} - \frac{1}{9} a^{10} + \frac{1}{9} a^{9} - \frac{1}{9} a^{8} - \frac{4}{9} a^{7} + \frac{4}{9} a^{6} - \frac{4}{9} a^{5} + \frac{4}{9} a^{4} - \frac{4}{9} a^{3} + \frac{4}{9} a^{2} - \frac{4}{9} a + \frac{4}{9}$, $\frac{1}{9} a^{16} + \frac{1}{9} a^{8} - \frac{2}{9}$, $\frac{1}{9} a^{17} + \frac{1}{9} a^{9} - \frac{2}{9} a$, $\frac{1}{9} a^{18} + \frac{1}{9} a^{10} - \frac{2}{9} a^{2}$, $\frac{1}{9} a^{19} + \frac{1}{9} a^{11} - \frac{2}{9} a^{3}$, $\frac{1}{27} a^{20} + \frac{1}{27} a^{19} - \frac{1}{27} a^{18} + \frac{1}{27} a^{17} - \frac{1}{27} a^{15} - \frac{2}{27} a^{14} + \frac{2}{27} a^{13} - \frac{4}{27} a^{12} + \frac{1}{9} a^{11} + \frac{1}{9} a^{10} - \frac{1}{9} a^{9} + \frac{1}{27} a^{8} + \frac{4}{27} a^{7} + \frac{8}{27} a^{6} + \frac{10}{27} a^{5} + \frac{1}{3} a^{4} - \frac{1}{27} a^{3} + \frac{4}{27} a^{2} - \frac{13}{27} a + \frac{5}{27}$, $\frac{1}{27} a^{21} + \frac{1}{27} a^{19} - \frac{1}{27} a^{18} - \frac{1}{27} a^{17} - \frac{1}{27} a^{16} - \frac{1}{27} a^{15} + \frac{4}{27} a^{14} + \frac{1}{9} a^{13} - \frac{2}{27} a^{12} + \frac{1}{9} a^{11} + \frac{4}{27} a^{9} + \frac{1}{9} a^{8} + \frac{4}{27} a^{7} + \frac{2}{27} a^{6} - \frac{10}{27} a^{5} - \frac{1}{27} a^{4} - \frac{1}{27} a^{3} + \frac{7}{27} a^{2} - \frac{1}{3} a - \frac{5}{27}$, $\frac{1}{27} a^{22} + \frac{1}{27} a^{19} + \frac{1}{27} a^{17} - \frac{1}{27} a^{16} - \frac{1}{27} a^{15} + \frac{2}{27} a^{14} - \frac{1}{27} a^{13} + \frac{4}{27} a^{12} + \frac{1}{9} a^{11} - \frac{2}{27} a^{10} + \frac{1}{9} a^{9} - \frac{5}{27} a^{7} - \frac{2}{9} a^{6} + \frac{4}{27} a^{5} + \frac{2}{27} a^{4} - \frac{10}{27} a^{3} - \frac{1}{27} a^{2} - \frac{1}{27} a + \frac{7}{27}$, $\frac{1}{27} a^{23} - \frac{1}{27} a^{19} - \frac{1}{27} a^{18} + \frac{1}{27} a^{17} - \frac{1}{27} a^{16} + \frac{4}{27} a^{14} - \frac{1}{27} a^{13} + \frac{1}{27} a^{12} + \frac{1}{27} a^{11} + \frac{1}{9} a^{9} - \frac{1}{9} a^{8} + \frac{2}{27} a^{7} + \frac{11}{27} a^{6} + \frac{4}{27} a^{5} + \frac{5}{27} a^{4} + \frac{1}{9} a^{3} - \frac{11}{27} a^{2} - \frac{1}{27} a + \frac{10}{27}$, $\frac{1}{5481} a^{24} + \frac{34}{5481} a^{23} - \frac{16}{5481} a^{22} + \frac{44}{5481} a^{21} + \frac{2}{5481} a^{20} - \frac{235}{5481} a^{19} + \frac{115}{5481} a^{18} + \frac{17}{1827} a^{17} - \frac{92}{5481} a^{16} + \frac{20}{609} a^{15} - \frac{260}{1827} a^{14} - \frac{128}{783} a^{13} + \frac{296}{1827} a^{12} - \frac{563}{5481} a^{11} - \frac{76}{5481} a^{10} - \frac{796}{5481} a^{9} + \frac{311}{5481} a^{8} - \frac{2263}{5481} a^{7} + \frac{19}{5481} a^{6} - \frac{20}{87} a^{5} - \frac{1298}{5481} a^{4} + \frac{215}{609} a^{3} + \frac{583}{1827} a^{2} - \frac{449}{5481} a - \frac{2140}{5481}$, $\frac{1}{16443} a^{25} - \frac{1}{16443} a^{24} - \frac{191}{16443} a^{23} + \frac{22}{1827} a^{22} + \frac{86}{16443} a^{21} + \frac{101}{16443} a^{20} + \frac{47}{1827} a^{19} + \frac{289}{16443} a^{18} - \frac{659}{16443} a^{17} - \frac{17}{5481} a^{16} - \frac{787}{16443} a^{15} + \frac{2}{2349} a^{14} - \frac{26}{189} a^{13} + \frac{634}{16443} a^{12} + \frac{1156}{16443} a^{11} + \frac{18}{203} a^{10} + \frac{1172}{16443} a^{9} - \frac{1780}{16443} a^{8} + \frac{1642}{5481} a^{7} - \frac{710}{2349} a^{6} - \frac{5918}{16443} a^{5} - \frac{1399}{5481} a^{4} - \frac{2437}{16443} a^{3} - \frac{2185}{16443} a^{2} - \frac{3883}{16443} a - \frac{175}{2349}$, $\frac{1}{49329} a^{26} - \frac{1}{16443} a^{24} - \frac{38}{7047} a^{23} - \frac{913}{49329} a^{22} + \frac{586}{49329} a^{21} + \frac{293}{49329} a^{20} + \frac{5}{1701} a^{19} + \frac{1877}{49329} a^{18} - \frac{1424}{49329} a^{17} + \frac{1871}{49329} a^{16} + \frac{1579}{49329} a^{15} - \frac{463}{49329} a^{14} + \frac{6247}{49329} a^{13} + \frac{7628}{49329} a^{12} + \frac{6436}{49329} a^{11} + \frac{2882}{49329} a^{10} - \frac{20}{49329} a^{9} + \frac{4679}{49329} a^{8} + \frac{14383}{49329} a^{7} + \frac{13409}{49329} a^{6} + \frac{2728}{7047} a^{5} + \frac{170}{49329} a^{4} + \frac{18835}{49329} a^{3} + \frac{24256}{49329} a^{2} - \frac{24197}{49329} a + \frac{74}{7047}$, $\frac{1}{49329} a^{27} + \frac{1}{49329} a^{24} + \frac{386}{49329} a^{23} + \frac{514}{49329} a^{22} - \frac{358}{49329} a^{21} - \frac{839}{49329} a^{20} + \frac{1814}{49329} a^{19} - \frac{2393}{49329} a^{18} - \frac{136}{7047} a^{17} - \frac{1490}{49329} a^{16} + \frac{1928}{49329} a^{15} - \frac{5168}{49329} a^{14} - \frac{5395}{49329} a^{13} - \frac{2201}{49329} a^{12} + \frac{5981}{49329} a^{11} + \frac{3931}{49329} a^{10} + \frac{5207}{49329} a^{9} + \frac{3490}{49329} a^{8} - \frac{10972}{49329} a^{7} - \frac{23570}{49329} a^{6} + \frac{3176}{7047} a^{5} - \frac{4394}{49329} a^{4} + \frac{7738}{49329} a^{3} - \frac{17099}{49329} a^{2} - \frac{22741}{49329} a + \frac{5927}{16443}$, $\frac{1}{1698525676071} a^{28} - \frac{2137156}{242646525153} a^{27} + \frac{267763}{58569850899} a^{26} - \frac{367088}{54791150841} a^{25} + \frac{1186888}{242646525153} a^{24} + \frac{11888307520}{1698525676071} a^{23} - \frac{3093067303}{1698525676071} a^{22} - \frac{4169648075}{242646525153} a^{21} - \frac{25503223408}{1698525676071} a^{20} - \frac{3114117326}{1698525676071} a^{19} + \frac{29428150796}{1698525676071} a^{18} + \frac{973512686}{58569850899} a^{17} + \frac{69276765407}{1698525676071} a^{16} + \frac{26119636432}{1698525676071} a^{15} - \frac{229960298653}{1698525676071} a^{14} + \frac{35976612691}{1698525676071} a^{13} + \frac{152462260997}{1698525676071} a^{12} + \frac{24182799313}{242646525153} a^{11} - \frac{125374199056}{1698525676071} a^{10} - \frac{259367916014}{1698525676071} a^{9} + \frac{101168133212}{1698525676071} a^{8} - \frac{322141988129}{1698525676071} a^{7} - \frac{204137227345}{1698525676071} a^{6} + \frac{1776112561}{242646525153} a^{5} - \frac{11353595342}{54791150841} a^{4} - \frac{602903428150}{1698525676071} a^{3} + \frac{33877139299}{188725075119} a^{2} + \frac{8980159702}{33304425021} a + \frac{118981838386}{1698525676071}$, $\frac{1}{4634583293229377106287478276191459511} a^{29} + \frac{103794522720642869416004}{662083327604196729469639753741637073} a^{28} + \frac{19269935420306996845505940747818}{4634583293229377106287478276191459511} a^{27} + \frac{10720167178107747165913144312096}{4634583293229377106287478276191459511} a^{26} - \frac{25630557569499600611140075427852}{4634583293229377106287478276191459511} a^{25} + \frac{5450790303852013395347160031948}{149502686878367003428628331490047081} a^{24} - \frac{35718617576885291949375400009759198}{4634583293229377106287478276191459511} a^{23} + \frac{84790019335751630171660777538861532}{4634583293229377106287478276191459511} a^{22} - \frac{38185647942947650490515623684983368}{4634583293229377106287478276191459511} a^{21} - \frac{51142856836829079524070843927958835}{4634583293229377106287478276191459511} a^{20} - \frac{118654380862941898052031305275325272}{4634583293229377106287478276191459511} a^{19} - \frac{40195456973738356593185026272764861}{4634583293229377106287478276191459511} a^{18} - \frac{856119732594203484031168103910220}{94583332514885247067091393391662439} a^{17} + \frac{164078576019005937998052417195651694}{4634583293229377106287478276191459511} a^{16} - \frac{23982430859315560696257601279172398}{662083327604196729469639753741637073} a^{15} + \frac{11081897274248611311816981403542229}{662083327604196729469639753741637073} a^{14} - \frac{2588849376923463702873144072534172}{4634583293229377106287478276191459511} a^{13} + \frac{255611601803071193772036367713129535}{4634583293229377106287478276191459511} a^{12} + \frac{547307846818859750206996728950850506}{4634583293229377106287478276191459511} a^{11} + \frac{454496060944340210956519553573998081}{4634583293229377106287478276191459511} a^{10} + \frac{598378329756934360300317104324118632}{4634583293229377106287478276191459511} a^{9} - \frac{608045335128255467065083455694497783}{4634583293229377106287478276191459511} a^{8} - \frac{18291730736113101157617960990464674}{94583332514885247067091393391662439} a^{7} + \frac{39237889473688585637586433477142656}{662083327604196729469639753741637073} a^{6} - \frac{764002448284593116469521898813378881}{4634583293229377106287478276191459511} a^{5} - \frac{1633650018686413898506570823357740882}{4634583293229377106287478276191459511} a^{4} - \frac{184280233010641738613290988954404673}{1544861097743125702095826092063819837} a^{3} - \frac{195379467646771073955678973821125344}{514953699247708567365275364021273279} a^{2} - \frac{23368459629184273723744433241418820}{662083327604196729469639753741637073} a - \frac{659105124440624055827120945664922784}{1544861097743125702095826092063819837}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
Rank: | $15$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 26934148162576.97 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A solvable group of order 60 |
The 18 conjugacy class representatives for $D_{30}$ |
Character table for $D_{30}$ |
Intermediate fields
\(\Q(\sqrt{5}) \), 3.1.751.1, 5.1.564001.1, 6.2.70500125.1, 10.2.994053525003125.2, 15.1.134734730815558692751.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | $30$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{15}$ | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{15}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{14}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | $30$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{15}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{10}$ | $30$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{14}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{14}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | $30$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{14}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{3}$ | $30$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{5}$ | $15^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
$5$ | 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
751 | Data not computed |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
1.3755.2t1.a.a | $1$ | $ 5 \cdot 751 $ | \(\Q(\sqrt{-3755}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
1.751.2t1.a.a | $1$ | $ 751 $ | \(\Q(\sqrt{-751}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
* | 1.5.2t1.a.a | $1$ | $ 5 $ | \(\Q(\sqrt{5}) \) | $C_2$ (as 2T1) | $1$ | $1$ |
* | 2.18775.6t3.a.a | $2$ | $ 5^{2} \cdot 751 $ | 6.0.52945593875.1 | $D_{6}$ (as 6T3) | $1$ | $0$ |
* | 2.751.3t2.a.a | $2$ | $ 751 $ | 3.1.751.1 | $S_3$ (as 3T2) | $1$ | $0$ |
* | 2.751.5t2.a.b | $2$ | $ 751 $ | 5.1.564001.1 | $D_{5}$ (as 5T2) | $1$ | $0$ |
* | 2.751.5t2.a.a | $2$ | $ 751 $ | 5.1.564001.1 | $D_{5}$ (as 5T2) | $1$ | $0$ |
* | 2.18775.10t3.a.b | $2$ | $ 5^{2} \cdot 751 $ | 10.0.746534197277346875.2 | $D_{10}$ (as 10T3) | $1$ | $0$ |
* | 2.18775.10t3.a.a | $2$ | $ 5^{2} \cdot 751 $ | 10.0.746534197277346875.2 | $D_{10}$ (as 10T3) | $1$ | $0$ |
* | 2.751.15t2.a.a | $2$ | $ 751 $ | 15.1.134734730815558692751.1 | $D_{15}$ (as 15T2) | $1$ | $0$ |
* | 2.751.15t2.a.d | $2$ | $ 751 $ | 15.1.134734730815558692751.1 | $D_{15}$ (as 15T2) | $1$ | $0$ |
* | 2.751.15t2.a.c | $2$ | $ 751 $ | 15.1.134734730815558692751.1 | $D_{15}$ (as 15T2) | $1$ | $0$ |
* | 2.751.15t2.a.b | $2$ | $ 751 $ | 15.1.134734730815558692751.1 | $D_{15}$ (as 15T2) | $1$ | $0$ |
* | 2.18775.30t14.a.d | $2$ | $ 5^{2} \cdot 751 $ | 30.2.553999258054841955537532525076904905639678955078125.1 | $D_{30}$ (as 30T14) | $1$ | $0$ |
* | 2.18775.30t14.a.c | $2$ | $ 5^{2} \cdot 751 $ | 30.2.553999258054841955537532525076904905639678955078125.1 | $D_{30}$ (as 30T14) | $1$ | $0$ |
* | 2.18775.30t14.a.a | $2$ | $ 5^{2} \cdot 751 $ | 30.2.553999258054841955537532525076904905639678955078125.1 | $D_{30}$ (as 30T14) | $1$ | $0$ |
* | 2.18775.30t14.a.b | $2$ | $ 5^{2} \cdot 751 $ | 30.2.553999258054841955537532525076904905639678955078125.1 | $D_{30}$ (as 30T14) | $1$ | $0$ |