Normalized defining polynomial
\(x^{30} - 6 x^{28} + 68 x^{26} - 536 x^{24} + 1904 x^{22} - 4192 x^{20} + 2240 x^{18} + 23936 x^{16} - 82432 x^{14} + 138752 x^{12} + 235520 x^{10} - 1073152 x^{8} + 2486272 x^{6} - 2449408 x^{4} + 2015232 x^{2} - 32768\)
Invariants
Degree: | $30$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[2, 14]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(347418617918033867346576267434667527455579320614912\)\(\medspace = 2^{45}\cdot 439^{14}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $48.38$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $2, 439$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $2$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{4} a^{5}$, $\frac{1}{8} a^{6}$, $\frac{1}{8} a^{7}$, $\frac{1}{48} a^{8} - \frac{1}{3}$, $\frac{1}{48} a^{9} - \frac{1}{3} a$, $\frac{1}{96} a^{10} - \frac{1}{6} a^{2}$, $\frac{1}{96} a^{11} - \frac{1}{6} a^{3}$, $\frac{1}{192} a^{12} - \frac{1}{12} a^{4}$, $\frac{1}{192} a^{13} - \frac{1}{12} a^{5}$, $\frac{1}{1152} a^{14} - \frac{1}{576} a^{12} + \frac{1}{288} a^{10} - \frac{1}{144} a^{8} - \frac{1}{72} a^{6} + \frac{1}{36} a^{4} - \frac{1}{18} a^{2} + \frac{1}{9}$, $\frac{1}{1152} a^{15} - \frac{1}{576} a^{13} + \frac{1}{288} a^{11} - \frac{1}{144} a^{9} - \frac{1}{72} a^{7} + \frac{1}{36} a^{5} - \frac{1}{18} a^{3} + \frac{1}{9} a$, $\frac{1}{2304} a^{16} + \frac{1}{144} a^{8} - \frac{2}{9}$, $\frac{1}{2304} a^{17} + \frac{1}{144} a^{9} - \frac{2}{9} a$, $\frac{1}{4608} a^{18} + \frac{1}{288} a^{10} - \frac{1}{9} a^{2}$, $\frac{1}{4608} a^{19} + \frac{1}{288} a^{11} - \frac{1}{9} a^{3}$, $\frac{1}{9216} a^{20} + \frac{1}{576} a^{12} - \frac{1}{18} a^{4}$, $\frac{1}{9216} a^{21} + \frac{1}{576} a^{13} - \frac{1}{18} a^{5}$, $\frac{1}{55296} a^{22} - \frac{1}{27648} a^{20} + \frac{1}{13824} a^{18} - \frac{1}{6912} a^{16} + \frac{1}{3456} a^{14} - \frac{1}{1728} a^{12} + \frac{1}{864} a^{10} - \frac{1}{432} a^{8} - \frac{1}{108} a^{6} + \frac{1}{54} a^{4} - \frac{1}{27} a^{2} + \frac{2}{27}$, $\frac{1}{55296} a^{23} - \frac{1}{27648} a^{21} + \frac{1}{13824} a^{19} - \frac{1}{6912} a^{17} + \frac{1}{3456} a^{15} - \frac{1}{1728} a^{13} + \frac{1}{864} a^{11} - \frac{1}{432} a^{9} - \frac{1}{108} a^{7} + \frac{1}{54} a^{5} - \frac{1}{27} a^{3} + \frac{2}{27} a$, $\frac{1}{331776} a^{24} + \frac{1}{165888} a^{22} + \frac{1}{41472} a^{20} + \frac{1}{41472} a^{18} + \frac{1}{10368} a^{16} - \frac{1}{5184} a^{14} - \frac{1}{1296} a^{12} - \frac{11}{2592} a^{10} + \frac{1}{648} a^{8} + \frac{1}{648} a^{6} + \frac{1}{162} a^{4} + \frac{5}{81} a^{2} - \frac{5}{81}$, $\frac{1}{331776} a^{25} + \frac{1}{165888} a^{23} + \frac{1}{41472} a^{21} + \frac{1}{41472} a^{19} + \frac{1}{10368} a^{17} - \frac{1}{5184} a^{15} - \frac{1}{1296} a^{13} - \frac{11}{2592} a^{11} + \frac{1}{648} a^{9} + \frac{1}{648} a^{7} + \frac{1}{162} a^{5} + \frac{5}{81} a^{3} - \frac{5}{81} a$, $\frac{1}{417374208} a^{26} - \frac{137}{208687104} a^{24} - \frac{65}{13042944} a^{22} + \frac{19}{1410048} a^{20} + \frac{329}{6521472} a^{18} - \frac{947}{13042944} a^{16} + \frac{941}{6521472} a^{14} - \frac{2683}{1630368} a^{12} - \frac{1849}{407592} a^{10} + \frac{197}{47952} a^{8} + \frac{719}{11988} a^{6} - \frac{9697}{101898} a^{4} + \frac{5024}{50949} a^{2} + \frac{5401}{16983}$, $\frac{1}{417374208} a^{27} - \frac{137}{208687104} a^{25} - \frac{65}{13042944} a^{23} + \frac{19}{1410048} a^{21} + \frac{329}{6521472} a^{19} - \frac{947}{13042944} a^{17} + \frac{941}{6521472} a^{15} - \frac{2683}{1630368} a^{13} - \frac{1849}{407592} a^{11} + \frac{197}{47952} a^{9} + \frac{719}{11988} a^{7} - \frac{9697}{101898} a^{5} + \frac{5024}{50949} a^{3} + \frac{5401}{16983} a$, $\frac{1}{323047636992} a^{28} - \frac{113}{161523818496} a^{26} + \frac{1}{65981952} a^{24} + \frac{185729}{40380954624} a^{22} + \frac{63673}{5047619328} a^{20} + \frac{364007}{10095238656} a^{18} - \frac{263437}{2523809664} a^{16} - \frac{304201}{2523809664} a^{14} - \frac{14015}{78869052} a^{12} - \frac{795607}{630952416} a^{10} + \frac{18031}{9278712} a^{8} + \frac{2867587}{78869052} a^{6} - \frac{1612129}{13144842} a^{4} - \frac{4847656}{19717263} a^{2} + \frac{4609462}{19717263}$, $\frac{1}{323047636992} a^{29} - \frac{113}{161523818496} a^{27} + \frac{1}{65981952} a^{25} + \frac{185729}{40380954624} a^{23} + \frac{63673}{5047619328} a^{21} + \frac{364007}{10095238656} a^{19} - \frac{263437}{2523809664} a^{17} - \frac{304201}{2523809664} a^{15} - \frac{14015}{78869052} a^{13} - \frac{795607}{630952416} a^{11} + \frac{18031}{9278712} a^{9} + \frac{2867587}{78869052} a^{7} - \frac{1612129}{13144842} a^{5} - \frac{4847656}{19717263} a^{3} + \frac{4609462}{19717263} a$
Class group and class number
not computed
Unit group
Rank: | $15$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) ![]() | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | not computed ![]() | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | not computed | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A solvable group of order 60 |
The 18 conjugacy class representatives for $D_{30}$ |
Character table for $D_{30}$ |
Intermediate fields
\(\Q(\sqrt{2}) \), 3.1.439.1, 5.1.192721.1, 6.2.98673152.2, 10.2.1217048865701888.3, 15.1.3142328914862177479.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/LocalNumberField/3.2.0.1}{2} }^{15}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{3}$ | $15^{2}$ | $30$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{5}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{14}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{3}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{14}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | $30$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{14}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{15}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{14}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{15}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{14}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | $30$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{15}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
2 | Data not computed | ||||||
439 | Data not computed |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
* | 1.8.2t1.a.a | $1$ | $ 2^{3}$ | \(\Q(\sqrt{2}) \) | $C_2$ (as 2T1) | $1$ | $1$ |
1.439.2t1.a.a | $1$ | $ 439 $ | \(\Q(\sqrt{-439}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
1.3512.2t1.b.a | $1$ | $ 2^{3} \cdot 439 $ | \(\Q(\sqrt{-878}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
* | 2.28096.6t3.a.a | $2$ | $ 2^{6} \cdot 439 $ | 6.2.98673152.2 | $D_{6}$ (as 6T3) | $1$ | $0$ |
* | 2.439.3t2.a.a | $2$ | $ 439 $ | 3.1.439.1 | $S_3$ (as 3T2) | $1$ | $0$ |
* | 2.439.5t2.a.a | $2$ | $ 439 $ | 5.1.192721.1 | $D_{5}$ (as 5T2) | $1$ | $0$ |
* | 2.439.5t2.a.b | $2$ | $ 439 $ | 5.1.192721.1 | $D_{5}$ (as 5T2) | $1$ | $0$ |
* | 2.28096.10t3.a.b | $2$ | $ 2^{6} \cdot 439 $ | 10.2.1217048865701888.3 | $D_{10}$ (as 10T3) | $1$ | $0$ |
* | 2.28096.10t3.a.a | $2$ | $ 2^{6} \cdot 439 $ | 10.2.1217048865701888.3 | $D_{10}$ (as 10T3) | $1$ | $0$ |
* | 2.439.15t2.a.c | $2$ | $ 439 $ | 15.1.3142328914862177479.1 | $D_{15}$ (as 15T2) | $1$ | $0$ |
* | 2.439.15t2.a.b | $2$ | $ 439 $ | 15.1.3142328914862177479.1 | $D_{15}$ (as 15T2) | $1$ | $0$ |
* | 2.439.15t2.a.a | $2$ | $ 439 $ | 15.1.3142328914862177479.1 | $D_{15}$ (as 15T2) | $1$ | $0$ |
* | 2.439.15t2.a.d | $2$ | $ 439 $ | 15.1.3142328914862177479.1 | $D_{15}$ (as 15T2) | $1$ | $0$ |
* | 2.28096.30t14.a.a | $2$ | $ 2^{6} \cdot 439 $ | 30.2.347418617918033867346576267434667527455579320614912.1 | $D_{30}$ (as 30T14) | $1$ | $0$ |
* | 2.28096.30t14.a.c | $2$ | $ 2^{6} \cdot 439 $ | 30.2.347418617918033867346576267434667527455579320614912.1 | $D_{30}$ (as 30T14) | $1$ | $0$ |
* | 2.28096.30t14.a.d | $2$ | $ 2^{6} \cdot 439 $ | 30.2.347418617918033867346576267434667527455579320614912.1 | $D_{30}$ (as 30T14) | $1$ | $0$ |
* | 2.28096.30t14.a.b | $2$ | $ 2^{6} \cdot 439 $ | 30.2.347418617918033867346576267434667527455579320614912.1 | $D_{30}$ (as 30T14) | $1$ | $0$ |