Normalized defining polynomial
\( x^{30} - 24 x^{28} + 342 x^{26} - 3240 x^{24} + 23571 x^{22} - 138753 x^{20} + 675054 x^{18} - 2755620 x^{16} + 9454401 x^{14} - 26985393 x^{12} + 64658655 x^{10} - 119042784 x^{8} + 183878586 x^{6} - 172186884 x^{4} + 153055008 x^{2} - 14348907 \)
Invariants
Degree: | $30$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[2, 14]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(30569568178695653232311243684564905832093935730688\)\(\medspace = 2^{30}\cdot 3^{15}\cdot 239^{14}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $44.62$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $2, 3, 239$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $2$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{3} a^{2}$, $\frac{1}{3} a^{3}$, $\frac{1}{9} a^{4}$, $\frac{1}{9} a^{5}$, $\frac{1}{27} a^{6}$, $\frac{1}{27} a^{7}$, $\frac{1}{81} a^{8}$, $\frac{1}{81} a^{9}$, $\frac{1}{243} a^{10}$, $\frac{1}{243} a^{11}$, $\frac{1}{729} a^{12}$, $\frac{1}{729} a^{13}$, $\frac{1}{2187} a^{14}$, $\frac{1}{2187} a^{15}$, $\frac{1}{6561} a^{16}$, $\frac{1}{6561} a^{17}$, $\frac{1}{19683} a^{18}$, $\frac{1}{19683} a^{19}$, $\frac{1}{59049} a^{20}$, $\frac{1}{59049} a^{21}$, $\frac{1}{177147} a^{22}$, $\frac{1}{177147} a^{23}$, $\frac{1}{6908733} a^{24} - \frac{2}{767637} a^{22} - \frac{2}{85293} a^{18} - \frac{2}{85293} a^{16} - \frac{1}{9477} a^{14} + \frac{2}{9477} a^{12} - \frac{2}{3159} a^{10} + \frac{1}{351} a^{8} - \frac{2}{117} a^{6} - \frac{1}{39} a^{4} + \frac{2}{39} a^{2} + \frac{4}{13}$, $\frac{1}{6908733} a^{25} - \frac{2}{767637} a^{23} - \frac{2}{85293} a^{19} - \frac{2}{85293} a^{17} - \frac{1}{9477} a^{15} + \frac{2}{9477} a^{13} - \frac{2}{3159} a^{11} + \frac{1}{351} a^{9} - \frac{2}{117} a^{7} - \frac{1}{39} a^{5} + \frac{2}{39} a^{3} + \frac{4}{13} a$, $\frac{1}{20726199} a^{26} + \frac{1}{767637} a^{22} - \frac{2}{255879} a^{20} + \frac{1}{255879} a^{18} - \frac{2}{85293} a^{16} - \frac{1}{9477} a^{14} - \frac{1}{3159} a^{12} + \frac{4}{3159} a^{10} - \frac{1}{1053} a^{8} - \frac{1}{39} a^{4} + \frac{1}{13} a^{2} - \frac{2}{13}$, $\frac{1}{20726199} a^{27} + \frac{1}{767637} a^{23} - \frac{2}{255879} a^{21} + \frac{1}{255879} a^{19} - \frac{2}{85293} a^{17} - \frac{1}{9477} a^{15} - \frac{1}{3159} a^{13} + \frac{4}{3159} a^{11} - \frac{1}{1053} a^{9} - \frac{1}{39} a^{5} + \frac{1}{13} a^{3} - \frac{2}{13} a$, $\frac{1}{25161311875033971} a^{28} - \frac{8108245}{645161842949589} a^{26} - \frac{75424400}{2795701319448219} a^{24} + \frac{293572879}{310633479938691} a^{22} - \frac{1173121429}{310633479938691} a^{20} + \frac{107436752}{14792070473271} a^{18} - \frac{106724084}{34514831104299} a^{16} + \frac{590740931}{3834981233811} a^{14} + \frac{186200132}{294998556447} a^{12} - \frac{307366898}{182618153991} a^{10} + \frac{1189733240}{426109025979} a^{8} + \frac{1364538158}{142036341993} a^{6} - \frac{536270992}{15781815777} a^{4} + \frac{836226970}{15781815777} a^{2} + \frac{2115234932}{5260605259}$, $\frac{1}{25161311875033971} a^{29} - \frac{8108245}{645161842949589} a^{27} - \frac{75424400}{2795701319448219} a^{25} + \frac{293572879}{310633479938691} a^{23} - \frac{1173121429}{310633479938691} a^{21} + \frac{107436752}{14792070473271} a^{19} - \frac{106724084}{34514831104299} a^{17} + \frac{590740931}{3834981233811} a^{15} + \frac{186200132}{294998556447} a^{13} - \frac{307366898}{182618153991} a^{11} + \frac{1189733240}{426109025979} a^{9} + \frac{1364538158}{142036341993} a^{7} - \frac{536270992}{15781815777} a^{5} + \frac{836226970}{15781815777} a^{3} + \frac{2115234932}{5260605259} a$
Class group and class number
not computed
Unit group
Rank: | $15$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | not computed | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | not computed | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A solvable group of order 60 |
The 18 conjugacy class representatives for $D_{30}$ |
Character table for $D_{30}$ |
Intermediate fields
\(\Q(\sqrt{3}) \), 3.1.239.1, 5.1.57121.1, 6.2.98705088.2, 10.2.811891199757312.1, 15.1.44543599279432079.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | $30$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{15}$ | $15^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{14}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{5}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{15}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{14}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | $30$ | $30$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{14}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{15}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{15}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{14}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{15}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{14}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
2 | Data not computed | ||||||
$3$ | 3.10.5.1 | $x^{10} - 18 x^{6} + 81 x^{2} - 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
3.10.5.1 | $x^{10} - 18 x^{6} + 81 x^{2} - 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
3.10.5.1 | $x^{10} - 18 x^{6} + 81 x^{2} - 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
239 | Data not computed |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
1.2868.2t1.a.a | $1$ | $ 2^{2} \cdot 3 \cdot 239 $ | \(\Q(\sqrt{-717}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
1.239.2t1.a.a | $1$ | $ 239 $ | \(\Q(\sqrt{-239}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
* | 1.12.2t1.a.a | $1$ | $ 2^{2} \cdot 3 $ | \(\Q(\sqrt{3}) \) | $C_2$ (as 2T1) | $1$ | $1$ |
* | 2.34416.6t3.a.a | $2$ | $ 2^{4} \cdot 3^{2} \cdot 239 $ | 6.0.23590516032.3 | $D_{6}$ (as 6T3) | $1$ | $0$ |
* | 2.239.3t2.a.a | $2$ | $ 239 $ | 3.1.239.1 | $S_3$ (as 3T2) | $1$ | $0$ |
* | 2.239.5t2.a.a | $2$ | $ 239 $ | 5.1.57121.1 | $D_{5}$ (as 5T2) | $1$ | $0$ |
* | 2.239.5t2.a.b | $2$ | $ 239 $ | 5.1.57121.1 | $D_{5}$ (as 5T2) | $1$ | $0$ |
* | 2.34416.10t3.a.a | $2$ | $ 2^{4} \cdot 3^{2} \cdot 239 $ | 10.0.194041996741997568.1 | $D_{10}$ (as 10T3) | $1$ | $0$ |
* | 2.34416.10t3.a.b | $2$ | $ 2^{4} \cdot 3^{2} \cdot 239 $ | 10.0.194041996741997568.1 | $D_{10}$ (as 10T3) | $1$ | $0$ |
* | 2.239.15t2.a.b | $2$ | $ 239 $ | 15.1.44543599279432079.1 | $D_{15}$ (as 15T2) | $1$ | $0$ |
* | 2.239.15t2.a.a | $2$ | $ 239 $ | 15.1.44543599279432079.1 | $D_{15}$ (as 15T2) | $1$ | $0$ |
* | 2.239.15t2.a.d | $2$ | $ 239 $ | 15.1.44543599279432079.1 | $D_{15}$ (as 15T2) | $1$ | $0$ |
* | 2.239.15t2.a.c | $2$ | $ 239 $ | 15.1.44543599279432079.1 | $D_{15}$ (as 15T2) | $1$ | $0$ |
* | 2.34416.30t14.a.a | $2$ | $ 2^{4} \cdot 3^{2} \cdot 239 $ | 30.2.30569568178695653232311243684564905832093935730688.1 | $D_{30}$ (as 30T14) | $1$ | $0$ |
* | 2.34416.30t14.a.d | $2$ | $ 2^{4} \cdot 3^{2} \cdot 239 $ | 30.2.30569568178695653232311243684564905832093935730688.1 | $D_{30}$ (as 30T14) | $1$ | $0$ |
* | 2.34416.30t14.a.b | $2$ | $ 2^{4} \cdot 3^{2} \cdot 239 $ | 30.2.30569568178695653232311243684564905832093935730688.1 | $D_{30}$ (as 30T14) | $1$ | $0$ |
* | 2.34416.30t14.a.c | $2$ | $ 2^{4} \cdot 3^{2} \cdot 239 $ | 30.2.30569568178695653232311243684564905832093935730688.1 | $D_{30}$ (as 30T14) | $1$ | $0$ |