Properties

Label 30.2.301...125.1
Degree $30$
Signature $[2, 14]$
Discriminant $3.013\times 10^{47}$
Root discriminant \(38.25\)
Ramified primes $5,439$
Class number $2$ (GRH)
Class group [2] (GRH)
Galois group $D_{30}$ (as 30T14)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^30 - 5*x^29 + 8*x^28 + 19*x^27 - 63*x^26 - 52*x^25 + 265*x^24 - 211*x^23 - 393*x^22 + 858*x^21 - 86*x^20 - 2380*x^19 + 4186*x^18 + 8272*x^17 - 3336*x^16 - 13036*x^15 + 7176*x^14 + 23259*x^13 + 6583*x^12 - 9115*x^11 - 7328*x^10 + 1279*x^9 + 4440*x^8 + 2429*x^7 - 349*x^6 - 1189*x^5 - 88*x^4 + 271*x^3 + 100*x^2 - 13*x - 1)
 
gp: K = bnfinit(y^30 - 5*y^29 + 8*y^28 + 19*y^27 - 63*y^26 - 52*y^25 + 265*y^24 - 211*y^23 - 393*y^22 + 858*y^21 - 86*y^20 - 2380*y^19 + 4186*y^18 + 8272*y^17 - 3336*y^16 - 13036*y^15 + 7176*y^14 + 23259*y^13 + 6583*y^12 - 9115*y^11 - 7328*y^10 + 1279*y^9 + 4440*y^8 + 2429*y^7 - 349*y^6 - 1189*y^5 - 88*y^4 + 271*y^3 + 100*y^2 - 13*y - 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^30 - 5*x^29 + 8*x^28 + 19*x^27 - 63*x^26 - 52*x^25 + 265*x^24 - 211*x^23 - 393*x^22 + 858*x^21 - 86*x^20 - 2380*x^19 + 4186*x^18 + 8272*x^17 - 3336*x^16 - 13036*x^15 + 7176*x^14 + 23259*x^13 + 6583*x^12 - 9115*x^11 - 7328*x^10 + 1279*x^9 + 4440*x^8 + 2429*x^7 - 349*x^6 - 1189*x^5 - 88*x^4 + 271*x^3 + 100*x^2 - 13*x - 1);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^30 - 5*x^29 + 8*x^28 + 19*x^27 - 63*x^26 - 52*x^25 + 265*x^24 - 211*x^23 - 393*x^22 + 858*x^21 - 86*x^20 - 2380*x^19 + 4186*x^18 + 8272*x^17 - 3336*x^16 - 13036*x^15 + 7176*x^14 + 23259*x^13 + 6583*x^12 - 9115*x^11 - 7328*x^10 + 1279*x^9 + 4440*x^8 + 2429*x^7 - 349*x^6 - 1189*x^5 - 88*x^4 + 271*x^3 + 100*x^2 - 13*x - 1)
 

\( x^{30} - 5 x^{29} + 8 x^{28} + 19 x^{27} - 63 x^{26} - 52 x^{25} + 265 x^{24} - 211 x^{23} - 393 x^{22} + \cdots - 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $30$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[2, 14]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(301337616246914973122131519082482771026611328125\) \(\medspace = 5^{15}\cdot 439^{14}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(38.25\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $5^{1/2}439^{1/2}\approx 46.850827100489916$
Ramified primes:   \(5\), \(439\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{5}) \)
$\card{ \Aut(K/\Q) }$:  $2$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3}a^{8}-\frac{1}{3}$, $\frac{1}{3}a^{9}-\frac{1}{3}a$, $\frac{1}{3}a^{10}-\frac{1}{3}a^{2}$, $\frac{1}{3}a^{11}-\frac{1}{3}a^{3}$, $\frac{1}{3}a^{12}-\frac{1}{3}a^{4}$, $\frac{1}{3}a^{13}-\frac{1}{3}a^{5}$, $\frac{1}{3}a^{14}-\frac{1}{3}a^{6}$, $\frac{1}{9}a^{15}+\frac{1}{9}a^{14}+\frac{1}{9}a^{13}+\frac{1}{9}a^{12}+\frac{1}{9}a^{11}+\frac{1}{9}a^{10}+\frac{1}{9}a^{9}+\frac{1}{9}a^{8}-\frac{4}{9}a^{7}-\frac{4}{9}a^{6}-\frac{4}{9}a^{5}-\frac{4}{9}a^{4}-\frac{4}{9}a^{3}-\frac{4}{9}a^{2}-\frac{4}{9}a-\frac{4}{9}$, $\frac{1}{9}a^{16}+\frac{1}{9}a^{8}-\frac{2}{9}$, $\frac{1}{9}a^{17}+\frac{1}{9}a^{9}-\frac{2}{9}a$, $\frac{1}{9}a^{18}+\frac{1}{9}a^{10}-\frac{2}{9}a^{2}$, $\frac{1}{9}a^{19}+\frac{1}{9}a^{11}-\frac{2}{9}a^{3}$, $\frac{1}{27}a^{20}+\frac{1}{27}a^{18}-\frac{1}{27}a^{17}-\frac{1}{27}a^{16}+\frac{1}{27}a^{15}+\frac{1}{27}a^{14}+\frac{1}{27}a^{13}-\frac{4}{27}a^{12}+\frac{1}{27}a^{11}-\frac{4}{27}a^{10}-\frac{1}{9}a^{9}-\frac{1}{9}a^{8}+\frac{5}{27}a^{7}-\frac{4}{27}a^{6}+\frac{5}{27}a^{5}+\frac{1}{3}a^{4}-\frac{13}{27}a^{3}-\frac{8}{27}a-\frac{8}{27}$, $\frac{1}{27}a^{21}+\frac{1}{27}a^{19}-\frac{1}{27}a^{18}-\frac{1}{27}a^{17}+\frac{1}{27}a^{16}+\frac{1}{27}a^{15}+\frac{1}{27}a^{14}-\frac{4}{27}a^{13}+\frac{1}{27}a^{12}-\frac{4}{27}a^{11}-\frac{1}{9}a^{10}-\frac{1}{9}a^{9}-\frac{4}{27}a^{8}-\frac{4}{27}a^{7}+\frac{5}{27}a^{6}+\frac{1}{3}a^{5}-\frac{13}{27}a^{4}-\frac{8}{27}a^{2}-\frac{8}{27}a+\frac{1}{3}$, $\frac{1}{27}a^{22}-\frac{1}{27}a^{19}+\frac{1}{27}a^{18}-\frac{1}{27}a^{17}-\frac{1}{27}a^{16}+\frac{4}{27}a^{14}-\frac{4}{27}a^{11}+\frac{4}{27}a^{10}-\frac{4}{27}a^{9}-\frac{4}{27}a^{8}+\frac{4}{27}a^{6}+\frac{1}{3}a^{5}-\frac{1}{3}a^{4}+\frac{5}{27}a^{3}+\frac{13}{27}a^{2}-\frac{4}{27}a-\frac{13}{27}$, $\frac{1}{27}a^{23}+\frac{1}{27}a^{19}+\frac{1}{27}a^{17}-\frac{1}{27}a^{16}-\frac{1}{27}a^{15}+\frac{4}{27}a^{14}+\frac{4}{27}a^{13}+\frac{4}{27}a^{12}-\frac{1}{27}a^{11}+\frac{4}{27}a^{10}-\frac{1}{27}a^{9}+\frac{2}{9}a^{7}-\frac{7}{27}a^{6}+\frac{11}{27}a^{5}-\frac{7}{27}a^{4}-\frac{1}{9}a^{3}+\frac{2}{27}a^{2}-\frac{4}{9}a+\frac{7}{27}$, $\frac{1}{27}a^{24}-\frac{1}{9}a^{8}+\frac{2}{27}$, $\frac{1}{27}a^{25}-\frac{1}{9}a^{9}+\frac{2}{27}a$, $\frac{1}{81}a^{26}+\frac{1}{81}a^{25}-\frac{1}{81}a^{22}-\frac{2}{81}a^{19}-\frac{1}{81}a^{18}+\frac{4}{81}a^{17}-\frac{2}{81}a^{16}-\frac{1}{27}a^{15}-\frac{7}{81}a^{14}+\frac{2}{27}a^{13}+\frac{2}{27}a^{12}-\frac{11}{81}a^{11}-\frac{10}{81}a^{10}+\frac{1}{81}a^{9}-\frac{11}{81}a^{8}+\frac{13}{27}a^{7}+\frac{8}{81}a^{6}-\frac{11}{27}a^{5}-\frac{5}{27}a^{4}-\frac{32}{81}a^{3}+\frac{1}{81}a^{2}+\frac{4}{27}a+\frac{13}{81}$, $\frac{1}{729}a^{27}+\frac{2}{729}a^{26}+\frac{10}{729}a^{25}-\frac{4}{243}a^{24}+\frac{11}{729}a^{23}-\frac{7}{729}a^{22}+\frac{1}{81}a^{21}+\frac{7}{729}a^{20}+\frac{11}{243}a^{19}-\frac{4}{243}a^{18}+\frac{29}{729}a^{17}-\frac{38}{729}a^{16}-\frac{13}{729}a^{15}+\frac{86}{729}a^{14}-\frac{10}{243}a^{13}-\frac{101}{729}a^{12}+\frac{2}{81}a^{11}-\frac{40}{243}a^{10}-\frac{115}{729}a^{9}+\frac{43}{729}a^{8}+\frac{326}{729}a^{7}+\frac{182}{729}a^{6}-\frac{80}{243}a^{5}-\frac{131}{729}a^{4}-\frac{88}{729}a^{3}-\frac{167}{729}a^{2}+\frac{220}{729}a-\frac{47}{729}$, $\frac{1}{384183}a^{28}-\frac{260}{384183}a^{27}-\frac{847}{384183}a^{26}-\frac{2965}{384183}a^{25}-\frac{112}{384183}a^{24}+\frac{1}{279}a^{23}-\frac{4088}{384183}a^{22}+\frac{1132}{384183}a^{21}+\frac{5597}{384183}a^{20}+\frac{448}{14229}a^{19}+\frac{18815}{384183}a^{18}-\frac{14665}{384183}a^{17}-\frac{20954}{384183}a^{16}+\frac{334}{42687}a^{15}+\frac{53290}{384183}a^{14}+\frac{60436}{384183}a^{13}-\frac{29842}{384183}a^{12}+\frac{18671}{128061}a^{11}+\frac{16835}{384183}a^{10}+\frac{58487}{384183}a^{9}-\frac{35114}{384183}a^{8}+\frac{12025}{42687}a^{7}+\frac{85303}{384183}a^{6}+\frac{11051}{22599}a^{5}-\frac{166322}{384183}a^{4}+\frac{7787}{384183}a^{3}+\frac{10474}{42687}a^{2}-\frac{52430}{128061}a-\frac{56923}{384183}$, $\frac{1}{69\!\cdots\!49}a^{29}-\frac{21\!\cdots\!77}{27\!\cdots\!59}a^{28}+\frac{97\!\cdots\!06}{69\!\cdots\!49}a^{27}-\frac{33\!\cdots\!46}{69\!\cdots\!49}a^{26}-\frac{63\!\cdots\!37}{69\!\cdots\!49}a^{25}+\frac{11\!\cdots\!42}{69\!\cdots\!49}a^{24}-\frac{40\!\cdots\!27}{23\!\cdots\!83}a^{23}+\frac{11\!\cdots\!38}{69\!\cdots\!49}a^{22}-\frac{50\!\cdots\!12}{69\!\cdots\!49}a^{21}-\frac{71\!\cdots\!67}{40\!\cdots\!97}a^{20}+\frac{29\!\cdots\!43}{69\!\cdots\!49}a^{19}+\frac{41\!\cdots\!32}{23\!\cdots\!83}a^{18}+\frac{16\!\cdots\!42}{69\!\cdots\!49}a^{17}-\frac{12\!\cdots\!91}{23\!\cdots\!83}a^{16}+\frac{13\!\cdots\!11}{77\!\cdots\!61}a^{15}-\frac{29\!\cdots\!74}{69\!\cdots\!49}a^{14}-\frac{11\!\cdots\!14}{69\!\cdots\!49}a^{13}+\frac{59\!\cdots\!11}{69\!\cdots\!49}a^{12}+\frac{19\!\cdots\!56}{69\!\cdots\!49}a^{11}+\frac{14\!\cdots\!32}{13\!\cdots\!99}a^{10}+\frac{19\!\cdots\!31}{69\!\cdots\!49}a^{9}+\frac{31\!\cdots\!15}{77\!\cdots\!61}a^{8}+\frac{32\!\cdots\!39}{23\!\cdots\!83}a^{7}-\frac{18\!\cdots\!88}{69\!\cdots\!49}a^{6}+\frac{30\!\cdots\!14}{77\!\cdots\!61}a^{5}+\frac{15\!\cdots\!37}{69\!\cdots\!49}a^{4}-\frac{42\!\cdots\!40}{23\!\cdots\!83}a^{3}+\frac{17\!\cdots\!38}{69\!\cdots\!49}a^{2}-\frac{96\!\cdots\!06}{25\!\cdots\!87}a+\frac{16\!\cdots\!62}{69\!\cdots\!49}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $3$

Class group and class number

$C_{2}$, which has order $2$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $15$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{51\!\cdots\!04}{69\!\cdots\!49}a^{29}-\frac{82\!\cdots\!22}{23\!\cdots\!83}a^{28}+\frac{37\!\cdots\!70}{69\!\cdots\!49}a^{27}+\frac{10\!\cdots\!65}{69\!\cdots\!49}a^{26}-\frac{30\!\cdots\!15}{69\!\cdots\!49}a^{25}-\frac{31\!\cdots\!18}{69\!\cdots\!49}a^{24}+\frac{43\!\cdots\!78}{23\!\cdots\!83}a^{23}-\frac{88\!\cdots\!90}{69\!\cdots\!49}a^{22}-\frac{21\!\cdots\!73}{69\!\cdots\!49}a^{21}+\frac{40\!\cdots\!35}{69\!\cdots\!49}a^{20}+\frac{16\!\cdots\!83}{69\!\cdots\!49}a^{19}-\frac{13\!\cdots\!58}{77\!\cdots\!61}a^{18}+\frac{11\!\cdots\!76}{40\!\cdots\!97}a^{17}+\frac{15\!\cdots\!54}{23\!\cdots\!83}a^{16}-\frac{38\!\cdots\!79}{25\!\cdots\!87}a^{15}-\frac{68\!\cdots\!30}{69\!\cdots\!49}a^{14}+\frac{26\!\cdots\!78}{69\!\cdots\!49}a^{13}+\frac{12\!\cdots\!77}{69\!\cdots\!49}a^{12}+\frac{51\!\cdots\!91}{69\!\cdots\!49}a^{11}-\frac{14\!\cdots\!93}{25\!\cdots\!87}a^{10}-\frac{43\!\cdots\!06}{69\!\cdots\!49}a^{9}+\frac{57\!\cdots\!57}{23\!\cdots\!83}a^{8}+\frac{75\!\cdots\!07}{23\!\cdots\!83}a^{7}+\frac{15\!\cdots\!83}{69\!\cdots\!49}a^{6}+\frac{17\!\cdots\!28}{23\!\cdots\!83}a^{5}-\frac{60\!\cdots\!41}{69\!\cdots\!49}a^{4}-\frac{44\!\cdots\!41}{23\!\cdots\!83}a^{3}+\frac{11\!\cdots\!02}{69\!\cdots\!49}a^{2}+\frac{14\!\cdots\!35}{15\!\cdots\!11}a-\frac{81\!\cdots\!28}{69\!\cdots\!49}$, $\frac{27\!\cdots\!57}{77\!\cdots\!61}a^{29}-\frac{15\!\cdots\!72}{77\!\cdots\!61}a^{28}+\frac{91\!\cdots\!81}{23\!\cdots\!83}a^{27}+\frac{10\!\cdots\!18}{23\!\cdots\!83}a^{26}-\frac{58\!\cdots\!84}{23\!\cdots\!83}a^{25}-\frac{32\!\cdots\!45}{85\!\cdots\!29}a^{24}+\frac{22\!\cdots\!48}{23\!\cdots\!83}a^{23}-\frac{30\!\cdots\!72}{23\!\cdots\!83}a^{22}-\frac{34\!\cdots\!68}{50\!\cdots\!37}a^{21}+\frac{81\!\cdots\!48}{23\!\cdots\!83}a^{20}-\frac{60\!\cdots\!39}{25\!\cdots\!87}a^{19}-\frac{56\!\cdots\!35}{77\!\cdots\!61}a^{18}+\frac{44\!\cdots\!64}{23\!\cdots\!83}a^{17}+\frac{42\!\cdots\!00}{23\!\cdots\!83}a^{16}-\frac{55\!\cdots\!84}{23\!\cdots\!83}a^{15}-\frac{73\!\cdots\!92}{23\!\cdots\!83}a^{14}+\frac{36\!\cdots\!26}{77\!\cdots\!61}a^{13}+\frac{12\!\cdots\!19}{23\!\cdots\!83}a^{12}-\frac{11\!\cdots\!94}{77\!\cdots\!61}a^{11}-\frac{19\!\cdots\!51}{77\!\cdots\!61}a^{10}-\frac{33\!\cdots\!83}{74\!\cdots\!93}a^{9}+\frac{26\!\cdots\!02}{23\!\cdots\!83}a^{8}+\frac{17\!\cdots\!39}{23\!\cdots\!83}a^{7}+\frac{67\!\cdots\!60}{23\!\cdots\!83}a^{6}-\frac{26\!\cdots\!74}{77\!\cdots\!61}a^{5}-\frac{52\!\cdots\!23}{23\!\cdots\!83}a^{4}+\frac{36\!\cdots\!10}{23\!\cdots\!83}a^{3}+\frac{80\!\cdots\!36}{23\!\cdots\!83}a^{2}-\frac{11\!\cdots\!81}{23\!\cdots\!83}a-\frac{22\!\cdots\!31}{23\!\cdots\!83}$, $\frac{51\!\cdots\!58}{69\!\cdots\!49}a^{29}-\frac{63\!\cdots\!63}{23\!\cdots\!83}a^{28}-\frac{33\!\cdots\!38}{69\!\cdots\!49}a^{27}+\frac{20\!\cdots\!10}{69\!\cdots\!49}a^{26}-\frac{30\!\cdots\!56}{69\!\cdots\!49}a^{25}-\frac{86\!\cdots\!28}{69\!\cdots\!49}a^{24}+\frac{59\!\cdots\!89}{23\!\cdots\!83}a^{23}+\frac{99\!\cdots\!95}{69\!\cdots\!49}a^{22}-\frac{64\!\cdots\!14}{69\!\cdots\!49}a^{21}+\frac{52\!\cdots\!46}{69\!\cdots\!49}a^{20}+\frac{86\!\cdots\!46}{69\!\cdots\!49}a^{19}-\frac{26\!\cdots\!01}{77\!\cdots\!61}a^{18}+\frac{10\!\cdots\!39}{69\!\cdots\!49}a^{17}+\frac{31\!\cdots\!76}{23\!\cdots\!83}a^{16}-\frac{20\!\cdots\!81}{77\!\cdots\!61}a^{15}-\frac{95\!\cdots\!37}{40\!\cdots\!97}a^{14}+\frac{89\!\cdots\!41}{40\!\cdots\!97}a^{13}+\frac{16\!\cdots\!60}{40\!\cdots\!97}a^{12}+\frac{62\!\cdots\!00}{69\!\cdots\!49}a^{11}-\frac{78\!\cdots\!85}{25\!\cdots\!87}a^{10}-\frac{86\!\cdots\!07}{69\!\cdots\!49}a^{9}+\frac{12\!\cdots\!79}{23\!\cdots\!83}a^{8}+\frac{20\!\cdots\!24}{23\!\cdots\!83}a^{7}+\frac{20\!\cdots\!67}{69\!\cdots\!49}a^{6}-\frac{58\!\cdots\!11}{23\!\cdots\!83}a^{5}-\frac{65\!\cdots\!26}{22\!\cdots\!79}a^{4}-\frac{10\!\cdots\!99}{23\!\cdots\!83}a^{3}+\frac{96\!\cdots\!28}{69\!\cdots\!49}a^{2}-\frac{86\!\cdots\!58}{77\!\cdots\!61}a-\frac{92\!\cdots\!34}{69\!\cdots\!49}$, $\frac{94\!\cdots\!22}{69\!\cdots\!49}a^{29}-\frac{19\!\cdots\!24}{23\!\cdots\!83}a^{28}+\frac{13\!\cdots\!13}{69\!\cdots\!49}a^{27}+\frac{80\!\cdots\!35}{69\!\cdots\!49}a^{26}-\frac{77\!\cdots\!62}{69\!\cdots\!49}a^{25}+\frac{22\!\cdots\!51}{69\!\cdots\!49}a^{24}+\frac{95\!\cdots\!92}{23\!\cdots\!83}a^{23}-\frac{28\!\cdots\!45}{40\!\cdots\!97}a^{22}-\frac{67\!\cdots\!30}{69\!\cdots\!49}a^{21}+\frac{11\!\cdots\!85}{69\!\cdots\!49}a^{20}-\frac{10\!\cdots\!36}{69\!\cdots\!49}a^{19}-\frac{20\!\cdots\!76}{77\!\cdots\!61}a^{18}+\frac{62\!\cdots\!54}{69\!\cdots\!49}a^{17}+\frac{91\!\cdots\!85}{23\!\cdots\!83}a^{16}-\frac{11\!\cdots\!29}{77\!\cdots\!61}a^{15}-\frac{76\!\cdots\!94}{69\!\cdots\!49}a^{14}+\frac{17\!\cdots\!65}{69\!\cdots\!49}a^{13}+\frac{39\!\cdots\!64}{22\!\cdots\!79}a^{12}-\frac{14\!\cdots\!19}{69\!\cdots\!49}a^{11}-\frac{44\!\cdots\!60}{25\!\cdots\!87}a^{10}-\frac{13\!\cdots\!87}{69\!\cdots\!49}a^{9}+\frac{22\!\cdots\!37}{23\!\cdots\!83}a^{8}+\frac{11\!\cdots\!45}{23\!\cdots\!83}a^{7}-\frac{14\!\cdots\!93}{69\!\cdots\!49}a^{6}-\frac{63\!\cdots\!19}{23\!\cdots\!83}a^{5}-\frac{57\!\cdots\!91}{40\!\cdots\!97}a^{4}+\frac{84\!\cdots\!90}{74\!\cdots\!93}a^{3}+\frac{18\!\cdots\!49}{69\!\cdots\!49}a^{2}-\frac{29\!\cdots\!43}{77\!\cdots\!61}a-\frac{69\!\cdots\!05}{69\!\cdots\!49}$, $\frac{26\!\cdots\!73}{23\!\cdots\!83}a^{29}-\frac{16\!\cdots\!07}{25\!\cdots\!87}a^{28}+\frac{10\!\cdots\!55}{77\!\cdots\!61}a^{27}+\frac{24\!\cdots\!12}{23\!\cdots\!83}a^{26}-\frac{18\!\cdots\!98}{23\!\cdots\!83}a^{25}+\frac{80\!\cdots\!66}{23\!\cdots\!83}a^{24}+\frac{71\!\cdots\!52}{23\!\cdots\!83}a^{23}-\frac{11\!\cdots\!01}{23\!\cdots\!83}a^{22}-\frac{24\!\cdots\!00}{23\!\cdots\!83}a^{21}+\frac{83\!\cdots\!11}{77\!\cdots\!61}a^{20}-\frac{20\!\cdots\!82}{23\!\cdots\!83}a^{19}-\frac{16\!\cdots\!39}{77\!\cdots\!61}a^{18}+\frac{54\!\cdots\!51}{85\!\cdots\!29}a^{17}+\frac{10\!\cdots\!97}{23\!\cdots\!83}a^{16}-\frac{18\!\cdots\!50}{23\!\cdots\!83}a^{15}-\frac{22\!\cdots\!73}{23\!\cdots\!83}a^{14}+\frac{38\!\cdots\!49}{23\!\cdots\!83}a^{13}+\frac{12\!\cdots\!92}{77\!\cdots\!61}a^{12}-\frac{15\!\cdots\!10}{23\!\cdots\!83}a^{11}-\frac{84\!\cdots\!31}{77\!\cdots\!61}a^{10}-\frac{88\!\cdots\!22}{77\!\cdots\!61}a^{9}+\frac{89\!\cdots\!24}{13\!\cdots\!99}a^{8}+\frac{63\!\cdots\!94}{23\!\cdots\!83}a^{7}-\frac{26\!\cdots\!61}{23\!\cdots\!83}a^{6}-\frac{16\!\cdots\!05}{77\!\cdots\!61}a^{5}-\frac{11\!\cdots\!31}{25\!\cdots\!87}a^{4}+\frac{19\!\cdots\!52}{23\!\cdots\!83}a^{3}+\frac{41\!\cdots\!01}{13\!\cdots\!99}a^{2}-\frac{92\!\cdots\!38}{23\!\cdots\!83}a-\frac{40\!\cdots\!33}{28\!\cdots\!43}$, $\frac{22\!\cdots\!41}{69\!\cdots\!49}a^{29}-\frac{60\!\cdots\!70}{23\!\cdots\!83}a^{28}+\frac{91\!\cdots\!95}{69\!\cdots\!49}a^{27}-\frac{16\!\cdots\!72}{69\!\cdots\!49}a^{26}-\frac{25\!\cdots\!19}{69\!\cdots\!49}a^{25}+\frac{10\!\cdots\!19}{69\!\cdots\!49}a^{24}+\frac{51\!\cdots\!41}{77\!\cdots\!61}a^{23}-\frac{43\!\cdots\!06}{69\!\cdots\!49}a^{22}+\frac{52\!\cdots\!35}{69\!\cdots\!49}a^{21}+\frac{22\!\cdots\!92}{40\!\cdots\!97}a^{20}-\frac{14\!\cdots\!47}{69\!\cdots\!49}a^{19}+\frac{90\!\cdots\!60}{77\!\cdots\!61}a^{18}+\frac{34\!\cdots\!72}{69\!\cdots\!49}a^{17}-\frac{26\!\cdots\!07}{23\!\cdots\!83}a^{16}-\frac{33\!\cdots\!63}{23\!\cdots\!83}a^{15}+\frac{68\!\cdots\!61}{69\!\cdots\!49}a^{14}+\frac{48\!\cdots\!36}{22\!\cdots\!79}a^{13}-\frac{16\!\cdots\!54}{69\!\cdots\!49}a^{12}-\frac{26\!\cdots\!95}{69\!\cdots\!49}a^{11}-\frac{28\!\cdots\!03}{45\!\cdots\!33}a^{10}+\frac{42\!\cdots\!03}{69\!\cdots\!49}a^{9}+\frac{55\!\cdots\!01}{82\!\cdots\!77}a^{8}-\frac{34\!\cdots\!43}{23\!\cdots\!83}a^{7}-\frac{31\!\cdots\!20}{69\!\cdots\!49}a^{6}-\frac{69\!\cdots\!69}{23\!\cdots\!83}a^{5}+\frac{21\!\cdots\!43}{69\!\cdots\!49}a^{4}+\frac{21\!\cdots\!84}{23\!\cdots\!83}a^{3}-\frac{33\!\cdots\!74}{69\!\cdots\!49}a^{2}+\frac{69\!\cdots\!18}{23\!\cdots\!83}a-\frac{82\!\cdots\!50}{69\!\cdots\!49}$, $\frac{15\!\cdots\!11}{69\!\cdots\!49}a^{29}-\frac{30\!\cdots\!44}{23\!\cdots\!83}a^{28}+\frac{21\!\cdots\!51}{69\!\cdots\!49}a^{27}+\frac{11\!\cdots\!46}{69\!\cdots\!49}a^{26}-\frac{11\!\cdots\!36}{69\!\cdots\!49}a^{25}+\frac{32\!\cdots\!11}{69\!\cdots\!49}a^{24}+\frac{14\!\cdots\!31}{23\!\cdots\!83}a^{23}-\frac{75\!\cdots\!30}{69\!\cdots\!49}a^{22}-\frac{33\!\cdots\!63}{69\!\cdots\!49}a^{21}+\frac{16\!\cdots\!85}{69\!\cdots\!49}a^{20}-\frac{16\!\cdots\!04}{69\!\cdots\!49}a^{19}-\frac{58\!\cdots\!13}{15\!\cdots\!11}a^{18}+\frac{96\!\cdots\!64}{69\!\cdots\!49}a^{17}+\frac{46\!\cdots\!11}{77\!\cdots\!61}a^{16}-\frac{47\!\cdots\!75}{23\!\cdots\!83}a^{15}-\frac{11\!\cdots\!24}{69\!\cdots\!49}a^{14}+\frac{26\!\cdots\!52}{69\!\cdots\!49}a^{13}+\frac{17\!\cdots\!69}{69\!\cdots\!49}a^{12}-\frac{16\!\cdots\!96}{69\!\cdots\!49}a^{11}-\frac{17\!\cdots\!38}{77\!\cdots\!61}a^{10}-\frac{31\!\cdots\!10}{69\!\cdots\!49}a^{9}+\frac{21\!\cdots\!15}{23\!\cdots\!83}a^{8}+\frac{47\!\cdots\!26}{77\!\cdots\!61}a^{7}+\frac{15\!\cdots\!29}{69\!\cdots\!49}a^{6}-\frac{77\!\cdots\!56}{23\!\cdots\!83}a^{5}-\frac{13\!\cdots\!87}{69\!\cdots\!49}a^{4}+\frac{60\!\cdots\!49}{85\!\cdots\!29}a^{3}+\frac{12\!\cdots\!81}{69\!\cdots\!49}a^{2}-\frac{51\!\cdots\!38}{23\!\cdots\!83}a-\frac{26\!\cdots\!12}{69\!\cdots\!49}$, $\frac{75\!\cdots\!54}{69\!\cdots\!49}a^{29}-\frac{12\!\cdots\!54}{23\!\cdots\!83}a^{28}+\frac{54\!\cdots\!89}{69\!\cdots\!49}a^{27}+\frac{15\!\cdots\!37}{69\!\cdots\!49}a^{26}-\frac{45\!\cdots\!10}{69\!\cdots\!49}a^{25}-\frac{45\!\cdots\!26}{69\!\cdots\!49}a^{24}+\frac{64\!\cdots\!18}{23\!\cdots\!83}a^{23}-\frac{76\!\cdots\!53}{40\!\cdots\!97}a^{22}-\frac{31\!\cdots\!97}{69\!\cdots\!49}a^{21}+\frac{60\!\cdots\!27}{69\!\cdots\!49}a^{20}+\frac{76\!\cdots\!58}{22\!\cdots\!79}a^{19}-\frac{19\!\cdots\!28}{77\!\cdots\!61}a^{18}+\frac{28\!\cdots\!74}{69\!\cdots\!49}a^{17}+\frac{22\!\cdots\!37}{23\!\cdots\!83}a^{16}-\frac{18\!\cdots\!06}{85\!\cdots\!29}a^{15}-\frac{10\!\cdots\!26}{69\!\cdots\!49}a^{14}+\frac{39\!\cdots\!41}{69\!\cdots\!49}a^{13}+\frac{18\!\cdots\!59}{69\!\cdots\!49}a^{12}+\frac{76\!\cdots\!49}{69\!\cdots\!49}a^{11}-\frac{21\!\cdots\!22}{25\!\cdots\!87}a^{10}-\frac{63\!\cdots\!45}{69\!\cdots\!49}a^{9}+\frac{84\!\cdots\!87}{23\!\cdots\!83}a^{8}+\frac{11\!\cdots\!89}{23\!\cdots\!83}a^{7}+\frac{23\!\cdots\!80}{69\!\cdots\!49}a^{6}+\frac{26\!\cdots\!05}{23\!\cdots\!83}a^{5}-\frac{52\!\cdots\!63}{40\!\cdots\!97}a^{4}-\frac{65\!\cdots\!94}{23\!\cdots\!83}a^{3}+\frac{17\!\cdots\!65}{69\!\cdots\!49}a^{2}-\frac{13\!\cdots\!25}{85\!\cdots\!29}a+\frac{51\!\cdots\!04}{69\!\cdots\!49}$, $\frac{35\!\cdots\!94}{69\!\cdots\!49}a^{29}-\frac{60\!\cdots\!65}{23\!\cdots\!83}a^{28}+\frac{29\!\cdots\!86}{69\!\cdots\!49}a^{27}+\frac{68\!\cdots\!65}{69\!\cdots\!49}a^{26}-\frac{23\!\cdots\!99}{69\!\cdots\!49}a^{25}-\frac{17\!\cdots\!49}{69\!\cdots\!49}a^{24}+\frac{32\!\cdots\!03}{23\!\cdots\!83}a^{23}-\frac{80\!\cdots\!92}{69\!\cdots\!49}a^{22}-\frac{14\!\cdots\!87}{69\!\cdots\!49}a^{21}+\frac{32\!\cdots\!34}{69\!\cdots\!49}a^{20}-\frac{33\!\cdots\!78}{69\!\cdots\!49}a^{19}-\frac{29\!\cdots\!45}{23\!\cdots\!83}a^{18}+\frac{15\!\cdots\!13}{69\!\cdots\!49}a^{17}+\frac{32\!\cdots\!48}{77\!\cdots\!61}a^{16}-\frac{17\!\cdots\!02}{77\!\cdots\!61}a^{15}-\frac{48\!\cdots\!77}{69\!\cdots\!49}a^{14}+\frac{31\!\cdots\!57}{69\!\cdots\!49}a^{13}+\frac{87\!\cdots\!95}{69\!\cdots\!49}a^{12}+\frac{11\!\cdots\!92}{69\!\cdots\!49}a^{11}-\frac{14\!\cdots\!82}{23\!\cdots\!83}a^{10}-\frac{21\!\cdots\!94}{69\!\cdots\!49}a^{9}+\frac{47\!\cdots\!76}{23\!\cdots\!83}a^{8}+\frac{53\!\cdots\!76}{23\!\cdots\!83}a^{7}+\frac{44\!\cdots\!19}{69\!\cdots\!49}a^{6}-\frac{70\!\cdots\!84}{23\!\cdots\!83}a^{5}-\frac{31\!\cdots\!77}{69\!\cdots\!49}a^{4}-\frac{45\!\cdots\!78}{45\!\cdots\!33}a^{3}+\frac{83\!\cdots\!04}{69\!\cdots\!49}a^{2}+\frac{37\!\cdots\!75}{77\!\cdots\!61}a-\frac{23\!\cdots\!09}{69\!\cdots\!49}$, $\frac{33\!\cdots\!28}{69\!\cdots\!49}a^{29}-\frac{53\!\cdots\!11}{23\!\cdots\!83}a^{28}+\frac{23\!\cdots\!65}{69\!\cdots\!49}a^{27}+\frac{21\!\cdots\!78}{22\!\cdots\!79}a^{26}-\frac{19\!\cdots\!88}{69\!\cdots\!49}a^{25}-\frac{20\!\cdots\!74}{69\!\cdots\!49}a^{24}+\frac{94\!\cdots\!08}{77\!\cdots\!61}a^{23}-\frac{55\!\cdots\!81}{69\!\cdots\!49}a^{22}-\frac{14\!\cdots\!42}{69\!\cdots\!49}a^{21}+\frac{26\!\cdots\!77}{69\!\cdots\!49}a^{20}+\frac{21\!\cdots\!62}{69\!\cdots\!49}a^{19}-\frac{26\!\cdots\!24}{23\!\cdots\!83}a^{18}+\frac{12\!\cdots\!20}{69\!\cdots\!49}a^{17}+\frac{58\!\cdots\!12}{13\!\cdots\!99}a^{16}-\frac{22\!\cdots\!75}{23\!\cdots\!83}a^{15}-\frac{44\!\cdots\!17}{69\!\cdots\!49}a^{14}+\frac{17\!\cdots\!03}{69\!\cdots\!49}a^{13}+\frac{80\!\cdots\!81}{69\!\cdots\!49}a^{12}+\frac{33\!\cdots\!71}{69\!\cdots\!49}a^{11}-\frac{88\!\cdots\!06}{23\!\cdots\!83}a^{10}-\frac{26\!\cdots\!58}{69\!\cdots\!49}a^{9}-\frac{46\!\cdots\!72}{23\!\cdots\!83}a^{8}+\frac{45\!\cdots\!73}{23\!\cdots\!83}a^{7}+\frac{10\!\cdots\!05}{69\!\cdots\!49}a^{6}+\frac{24\!\cdots\!76}{23\!\cdots\!83}a^{5}-\frac{37\!\cdots\!35}{69\!\cdots\!49}a^{4}-\frac{40\!\cdots\!81}{23\!\cdots\!83}a^{3}+\frac{98\!\cdots\!77}{69\!\cdots\!49}a^{2}+\frac{12\!\cdots\!00}{23\!\cdots\!83}a+\frac{33\!\cdots\!05}{69\!\cdots\!49}$, $\frac{21\!\cdots\!91}{69\!\cdots\!49}a^{29}-\frac{35\!\cdots\!25}{23\!\cdots\!83}a^{28}+\frac{17\!\cdots\!67}{69\!\cdots\!49}a^{27}+\frac{38\!\cdots\!40}{69\!\cdots\!49}a^{26}-\frac{13\!\cdots\!41}{69\!\cdots\!49}a^{25}-\frac{10\!\cdots\!19}{69\!\cdots\!49}a^{24}+\frac{20\!\cdots\!04}{25\!\cdots\!87}a^{23}-\frac{47\!\cdots\!57}{69\!\cdots\!49}a^{22}-\frac{46\!\cdots\!22}{40\!\cdots\!97}a^{21}+\frac{18\!\cdots\!57}{69\!\cdots\!49}a^{20}-\frac{28\!\cdots\!60}{69\!\cdots\!49}a^{19}-\frac{16\!\cdots\!82}{23\!\cdots\!83}a^{18}+\frac{91\!\cdots\!38}{69\!\cdots\!49}a^{17}+\frac{56\!\cdots\!39}{23\!\cdots\!83}a^{16}-\frac{26\!\cdots\!66}{23\!\cdots\!83}a^{15}-\frac{26\!\cdots\!23}{69\!\cdots\!49}a^{14}+\frac{16\!\cdots\!20}{69\!\cdots\!49}a^{13}+\frac{48\!\cdots\!50}{69\!\cdots\!49}a^{12}+\frac{10\!\cdots\!38}{69\!\cdots\!49}a^{11}-\frac{66\!\cdots\!39}{23\!\cdots\!83}a^{10}-\frac{14\!\cdots\!62}{69\!\cdots\!49}a^{9}+\frac{13\!\cdots\!55}{23\!\cdots\!83}a^{8}+\frac{31\!\cdots\!48}{23\!\cdots\!83}a^{7}+\frac{46\!\cdots\!19}{69\!\cdots\!49}a^{6}-\frac{35\!\cdots\!80}{23\!\cdots\!83}a^{5}-\frac{24\!\cdots\!24}{69\!\cdots\!49}a^{4}+\frac{19\!\cdots\!84}{23\!\cdots\!83}a^{3}+\frac{61\!\cdots\!69}{69\!\cdots\!49}a^{2}+\frac{65\!\cdots\!73}{23\!\cdots\!83}a-\frac{33\!\cdots\!32}{69\!\cdots\!49}$, $\frac{24\!\cdots\!30}{69\!\cdots\!49}a^{29}-\frac{13\!\cdots\!94}{77\!\cdots\!61}a^{28}+\frac{19\!\cdots\!86}{69\!\cdots\!49}a^{27}+\frac{46\!\cdots\!41}{69\!\cdots\!49}a^{26}-\frac{15\!\cdots\!39}{69\!\cdots\!49}a^{25}-\frac{12\!\cdots\!02}{69\!\cdots\!49}a^{24}+\frac{21\!\cdots\!97}{23\!\cdots\!83}a^{23}-\frac{53\!\cdots\!76}{69\!\cdots\!49}a^{22}-\frac{95\!\cdots\!58}{69\!\cdots\!49}a^{21}+\frac{21\!\cdots\!99}{69\!\cdots\!49}a^{20}-\frac{24\!\cdots\!87}{69\!\cdots\!49}a^{19}-\frac{19\!\cdots\!23}{23\!\cdots\!83}a^{18}+\frac{10\!\cdots\!01}{69\!\cdots\!49}a^{17}+\frac{68\!\cdots\!45}{23\!\cdots\!83}a^{16}-\frac{88\!\cdots\!06}{77\!\cdots\!61}a^{15}-\frac{31\!\cdots\!67}{69\!\cdots\!49}a^{14}+\frac{17\!\cdots\!20}{69\!\cdots\!49}a^{13}+\frac{56\!\cdots\!78}{69\!\cdots\!49}a^{12}+\frac{16\!\cdots\!78}{69\!\cdots\!49}a^{11}-\frac{68\!\cdots\!28}{23\!\cdots\!83}a^{10}-\frac{16\!\cdots\!29}{69\!\cdots\!49}a^{9}+\frac{20\!\cdots\!33}{45\!\cdots\!33}a^{8}+\frac{34\!\cdots\!85}{23\!\cdots\!83}a^{7}+\frac{58\!\cdots\!18}{69\!\cdots\!49}a^{6}-\frac{79\!\cdots\!38}{77\!\cdots\!61}a^{5}-\frac{26\!\cdots\!84}{69\!\cdots\!49}a^{4}-\frac{25\!\cdots\!59}{23\!\cdots\!83}a^{3}+\frac{38\!\cdots\!93}{40\!\cdots\!97}a^{2}+\frac{24\!\cdots\!50}{77\!\cdots\!61}a-\frac{34\!\cdots\!73}{69\!\cdots\!49}$, $\frac{13\!\cdots\!33}{40\!\cdots\!97}a^{29}-\frac{12\!\cdots\!52}{77\!\cdots\!61}a^{28}+\frac{16\!\cdots\!13}{69\!\cdots\!49}a^{27}+\frac{48\!\cdots\!49}{69\!\cdots\!49}a^{26}-\frac{13\!\cdots\!98}{69\!\cdots\!49}a^{25}-\frac{15\!\cdots\!94}{69\!\cdots\!49}a^{24}+\frac{11\!\cdots\!72}{13\!\cdots\!99}a^{23}-\frac{37\!\cdots\!07}{69\!\cdots\!49}a^{22}-\frac{10\!\cdots\!77}{69\!\cdots\!49}a^{21}+\frac{18\!\cdots\!78}{69\!\cdots\!49}a^{20}+\frac{16\!\cdots\!86}{69\!\cdots\!49}a^{19}-\frac{18\!\cdots\!29}{23\!\cdots\!83}a^{18}+\frac{87\!\cdots\!81}{69\!\cdots\!49}a^{17}+\frac{22\!\cdots\!14}{74\!\cdots\!93}a^{16}-\frac{39\!\cdots\!71}{77\!\cdots\!61}a^{15}-\frac{31\!\cdots\!73}{69\!\cdots\!49}a^{14}+\frac{10\!\cdots\!02}{69\!\cdots\!49}a^{13}+\frac{57\!\cdots\!24}{69\!\cdots\!49}a^{12}+\frac{87\!\cdots\!10}{22\!\cdots\!79}a^{11}-\frac{52\!\cdots\!47}{23\!\cdots\!83}a^{10}-\frac{20\!\cdots\!71}{69\!\cdots\!49}a^{9}-\frac{10\!\cdots\!61}{77\!\cdots\!61}a^{8}+\frac{33\!\cdots\!68}{23\!\cdots\!83}a^{7}+\frac{73\!\cdots\!07}{69\!\cdots\!49}a^{6}+\frac{12\!\cdots\!89}{15\!\cdots\!11}a^{5}-\frac{24\!\cdots\!11}{69\!\cdots\!49}a^{4}-\frac{19\!\cdots\!29}{23\!\cdots\!83}a^{3}+\frac{45\!\cdots\!63}{69\!\cdots\!49}a^{2}+\frac{10\!\cdots\!28}{28\!\cdots\!43}a+\frac{12\!\cdots\!57}{69\!\cdots\!49}$, $\frac{42\!\cdots\!48}{69\!\cdots\!49}a^{29}-\frac{68\!\cdots\!72}{23\!\cdots\!83}a^{28}+\frac{30\!\cdots\!82}{69\!\cdots\!49}a^{27}+\frac{87\!\cdots\!04}{69\!\cdots\!49}a^{26}-\frac{25\!\cdots\!31}{69\!\cdots\!49}a^{25}-\frac{27\!\cdots\!40}{69\!\cdots\!49}a^{24}+\frac{35\!\cdots\!57}{23\!\cdots\!83}a^{23}-\frac{69\!\cdots\!05}{69\!\cdots\!49}a^{22}-\frac{18\!\cdots\!24}{69\!\cdots\!49}a^{21}+\frac{33\!\cdots\!57}{69\!\cdots\!49}a^{20}+\frac{87\!\cdots\!94}{22\!\cdots\!79}a^{19}-\frac{37\!\cdots\!85}{25\!\cdots\!87}a^{18}+\frac{15\!\cdots\!78}{69\!\cdots\!49}a^{17}+\frac{14\!\cdots\!15}{25\!\cdots\!87}a^{16}-\frac{21\!\cdots\!58}{23\!\cdots\!83}a^{15}-\frac{33\!\cdots\!21}{40\!\cdots\!97}a^{14}+\frac{11\!\cdots\!26}{40\!\cdots\!97}a^{13}+\frac{60\!\cdots\!93}{40\!\cdots\!97}a^{12}+\frac{48\!\cdots\!74}{69\!\cdots\!49}a^{11}-\frac{30\!\cdots\!13}{77\!\cdots\!61}a^{10}-\frac{35\!\cdots\!87}{69\!\cdots\!49}a^{9}-\frac{59\!\cdots\!26}{23\!\cdots\!83}a^{8}+\frac{65\!\cdots\!79}{25\!\cdots\!87}a^{7}+\frac{13\!\cdots\!80}{69\!\cdots\!49}a^{6}+\frac{44\!\cdots\!28}{23\!\cdots\!83}a^{5}-\frac{44\!\cdots\!63}{69\!\cdots\!49}a^{4}-\frac{12\!\cdots\!40}{77\!\cdots\!61}a^{3}+\frac{87\!\cdots\!77}{69\!\cdots\!49}a^{2}+\frac{17\!\cdots\!23}{23\!\cdots\!83}a+\frac{27\!\cdots\!67}{69\!\cdots\!49}$, $\frac{12\!\cdots\!41}{69\!\cdots\!49}a^{29}-\frac{17\!\cdots\!24}{23\!\cdots\!83}a^{28}+\frac{60\!\cdots\!88}{69\!\cdots\!49}a^{27}+\frac{28\!\cdots\!41}{69\!\cdots\!49}a^{26}-\frac{59\!\cdots\!24}{69\!\cdots\!49}a^{25}-\frac{11\!\cdots\!04}{69\!\cdots\!49}a^{24}+\frac{86\!\cdots\!63}{23\!\cdots\!83}a^{23}-\frac{63\!\cdots\!13}{69\!\cdots\!49}a^{22}-\frac{57\!\cdots\!24}{69\!\cdots\!49}a^{21}+\frac{67\!\cdots\!89}{69\!\cdots\!49}a^{20}+\frac{45\!\cdots\!45}{69\!\cdots\!49}a^{19}-\frac{33\!\cdots\!14}{85\!\cdots\!29}a^{18}+\frac{32\!\cdots\!59}{69\!\cdots\!49}a^{17}+\frac{43\!\cdots\!67}{23\!\cdots\!83}a^{16}+\frac{16\!\cdots\!92}{25\!\cdots\!87}a^{15}-\frac{14\!\cdots\!61}{69\!\cdots\!49}a^{14}-\frac{20\!\cdots\!73}{69\!\cdots\!49}a^{13}+\frac{29\!\cdots\!05}{69\!\cdots\!49}a^{12}+\frac{17\!\cdots\!49}{40\!\cdots\!97}a^{11}+\frac{50\!\cdots\!36}{77\!\cdots\!61}a^{10}-\frac{56\!\cdots\!01}{40\!\cdots\!97}a^{9}-\frac{18\!\cdots\!55}{23\!\cdots\!83}a^{8}+\frac{25\!\cdots\!50}{74\!\cdots\!93}a^{7}+\frac{49\!\cdots\!03}{69\!\cdots\!49}a^{6}+\frac{87\!\cdots\!14}{23\!\cdots\!83}a^{5}-\frac{20\!\cdots\!06}{69\!\cdots\!49}a^{4}-\frac{17\!\cdots\!27}{23\!\cdots\!83}a^{3}-\frac{79\!\cdots\!89}{69\!\cdots\!49}a^{2}+\frac{38\!\cdots\!29}{25\!\cdots\!87}a+\frac{66\!\cdots\!96}{69\!\cdots\!49}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 748323688575.9082 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{14}\cdot 748323688575.9082 \cdot 2}{2\cdot\sqrt{301337616246914973122131519082482771026611328125}}\cr\approx \mathstrut & 0.814968771317785 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^30 - 5*x^29 + 8*x^28 + 19*x^27 - 63*x^26 - 52*x^25 + 265*x^24 - 211*x^23 - 393*x^22 + 858*x^21 - 86*x^20 - 2380*x^19 + 4186*x^18 + 8272*x^17 - 3336*x^16 - 13036*x^15 + 7176*x^14 + 23259*x^13 + 6583*x^12 - 9115*x^11 - 7328*x^10 + 1279*x^9 + 4440*x^8 + 2429*x^7 - 349*x^6 - 1189*x^5 - 88*x^4 + 271*x^3 + 100*x^2 - 13*x - 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^30 - 5*x^29 + 8*x^28 + 19*x^27 - 63*x^26 - 52*x^25 + 265*x^24 - 211*x^23 - 393*x^22 + 858*x^21 - 86*x^20 - 2380*x^19 + 4186*x^18 + 8272*x^17 - 3336*x^16 - 13036*x^15 + 7176*x^14 + 23259*x^13 + 6583*x^12 - 9115*x^11 - 7328*x^10 + 1279*x^9 + 4440*x^8 + 2429*x^7 - 349*x^6 - 1189*x^5 - 88*x^4 + 271*x^3 + 100*x^2 - 13*x - 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^30 - 5*x^29 + 8*x^28 + 19*x^27 - 63*x^26 - 52*x^25 + 265*x^24 - 211*x^23 - 393*x^22 + 858*x^21 - 86*x^20 - 2380*x^19 + 4186*x^18 + 8272*x^17 - 3336*x^16 - 13036*x^15 + 7176*x^14 + 23259*x^13 + 6583*x^12 - 9115*x^11 - 7328*x^10 + 1279*x^9 + 4440*x^8 + 2429*x^7 - 349*x^6 - 1189*x^5 - 88*x^4 + 271*x^3 + 100*x^2 - 13*x - 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^30 - 5*x^29 + 8*x^28 + 19*x^27 - 63*x^26 - 52*x^25 + 265*x^24 - 211*x^23 - 393*x^22 + 858*x^21 - 86*x^20 - 2380*x^19 + 4186*x^18 + 8272*x^17 - 3336*x^16 - 13036*x^15 + 7176*x^14 + 23259*x^13 + 6583*x^12 - 9115*x^11 - 7328*x^10 + 1279*x^9 + 4440*x^8 + 2429*x^7 - 349*x^6 - 1189*x^5 - 88*x^4 + 271*x^3 + 100*x^2 - 13*x - 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$D_{30}$ (as 30T14):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 60
The 18 conjugacy class representatives for $D_{30}$
Character table for $D_{30}$

Intermediate fields

\(\Q(\sqrt{5}) \), 3.1.439.1, 5.1.192721.1, 6.2.24090125.1, 10.2.116066824503125.1, 15.1.3142328914862177479.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 30 sibling: deg 30
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $30$ ${\href{/padicField/3.2.0.1}{2} }^{15}$ R $30$ $15^{2}$ ${\href{/padicField/13.6.0.1}{6} }^{5}$ ${\href{/padicField/17.2.0.1}{2} }^{15}$ ${\href{/padicField/19.5.0.1}{5} }^{6}$ ${\href{/padicField/23.2.0.1}{2} }^{15}$ $15^{2}$ ${\href{/padicField/31.2.0.1}{2} }^{14}{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ ${\href{/padicField/37.2.0.1}{2} }^{15}$ ${\href{/padicField/41.2.0.1}{2} }^{14}{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ ${\href{/padicField/43.2.0.1}{2} }^{15}$ ${\href{/padicField/47.2.0.1}{2} }^{15}$ $30$ ${\href{/padicField/59.2.0.1}{2} }^{14}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(5\) Copy content Toggle raw display 5.10.5.1$x^{10} + 100 x^{9} + 4025 x^{8} + 82000 x^{7} + 860258 x^{6} + 4015486 x^{5} + 4317350 x^{4} + 2373700 x^{3} + 3853141 x^{2} + 15123594 x + 12051954$$2$$5$$5$$C_{10}$$[\ ]_{2}^{5}$
5.10.5.1$x^{10} + 100 x^{9} + 4025 x^{8} + 82000 x^{7} + 860258 x^{6} + 4015486 x^{5} + 4317350 x^{4} + 2373700 x^{3} + 3853141 x^{2} + 15123594 x + 12051954$$2$$5$$5$$C_{10}$$[\ ]_{2}^{5}$
5.10.5.1$x^{10} + 100 x^{9} + 4025 x^{8} + 82000 x^{7} + 860258 x^{6} + 4015486 x^{5} + 4317350 x^{4} + 2373700 x^{3} + 3853141 x^{2} + 15123594 x + 12051954$$2$$5$$5$$C_{10}$$[\ ]_{2}^{5}$
\(439\) Copy content Toggle raw display $\Q_{439}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{439}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$

Artin representations

Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
* 1.1.1t1.a.a$1$ $1$ \(\Q\) $C_1$ $1$ $1$
1.2195.2t1.a.a$1$ $ 5 \cdot 439 $ \(\Q(\sqrt{-2195}) \) $C_2$ (as 2T1) $1$ $-1$
1.439.2t1.a.a$1$ $ 439 $ \(\Q(\sqrt{-439}) \) $C_2$ (as 2T1) $1$ $-1$
* 1.5.2t1.a.a$1$ $ 5 $ \(\Q(\sqrt{5}) \) $C_2$ (as 2T1) $1$ $1$
* 2.10975.6t3.a.a$2$ $ 5^{2} \cdot 439 $ 6.0.10575564875.1 $D_{6}$ (as 6T3) $1$ $0$
* 2.439.3t2.a.a$2$ $ 439 $ 3.1.439.1 $S_3$ (as 3T2) $1$ $0$
* 2.439.5t2.a.a$2$ $ 439 $ 5.1.192721.1 $D_{5}$ (as 5T2) $1$ $0$
* 2.439.5t2.a.b$2$ $ 439 $ 5.1.192721.1 $D_{5}$ (as 5T2) $1$ $0$
* 2.10975.10t3.a.b$2$ $ 5^{2} \cdot 439 $ 10.0.50953335956871875.1 $D_{10}$ (as 10T3) $1$ $0$
* 2.10975.10t3.a.a$2$ $ 5^{2} \cdot 439 $ 10.0.50953335956871875.1 $D_{10}$ (as 10T3) $1$ $0$
* 2.439.15t2.a.a$2$ $ 439 $ 15.1.3142328914862177479.1 $D_{15}$ (as 15T2) $1$ $0$
* 2.10975.30t14.a.c$2$ $ 5^{2} \cdot 439 $ 30.2.301337616246914973122131519082482771026611328125.1 $D_{30}$ (as 30T14) $1$ $0$
* 2.439.15t2.a.c$2$ $ 439 $ 15.1.3142328914862177479.1 $D_{15}$ (as 15T2) $1$ $0$
* 2.10975.30t14.a.a$2$ $ 5^{2} \cdot 439 $ 30.2.301337616246914973122131519082482771026611328125.1 $D_{30}$ (as 30T14) $1$ $0$
* 2.439.15t2.a.b$2$ $ 439 $ 15.1.3142328914862177479.1 $D_{15}$ (as 15T2) $1$ $0$
* 2.10975.30t14.a.b$2$ $ 5^{2} \cdot 439 $ 30.2.301337616246914973122131519082482771026611328125.1 $D_{30}$ (as 30T14) $1$ $0$
* 2.439.15t2.a.d$2$ $ 439 $ 15.1.3142328914862177479.1 $D_{15}$ (as 15T2) $1$ $0$
* 2.10975.30t14.a.d$2$ $ 5^{2} \cdot 439 $ 30.2.301337616246914973122131519082482771026611328125.1 $D_{30}$ (as 30T14) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.