Normalized defining polynomial
\( x^{30} - 3 x^{29} + 21 x^{28} - 42 x^{27} + 225 x^{26} - 359 x^{25} + 651 x^{24} - 2808 x^{23} - 1822 x^{22} - 11536 x^{21} - 10414 x^{20} - 26496 x^{19} - 25330 x^{18} - 33066 x^{17} - 28312 x^{16} - 19700 x^{15} - 18200 x^{14} + 6446 x^{13} - 8210 x^{12} + 13412 x^{11} - 5750 x^{10} + 6200 x^{9} - 4422 x^{8} + 1276 x^{7} - 711 x^{6} + 161 x^{5} - 113 x^{4} - 42 x^{3} + 3 x^{2} - 3 x - 1 \)
Invariants
Degree: | $30$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[2, 14]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(1109410857892705938292621064252192000000000000000\)\(\medspace = 2^{20}\cdot 5^{15}\cdot 179^{14}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $39.95$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $2, 5, 179$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $2$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{12} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{12} - \frac{1}{2} a^{6} - \frac{1}{4} a^{3} - \frac{1}{4}$, $\frac{1}{4} a^{16} - \frac{1}{4} a^{13} - \frac{1}{2} a^{7} - \frac{1}{4} a^{4} - \frac{1}{4} a$, $\frac{1}{4} a^{17} - \frac{1}{4} a^{14} - \frac{1}{2} a^{8} - \frac{1}{4} a^{5} - \frac{1}{4} a^{2}$, $\frac{1}{28} a^{18} + \frac{1}{28} a^{17} + \frac{3}{28} a^{16} - \frac{1}{14} a^{15} + \frac{5}{28} a^{14} + \frac{1}{28} a^{13} + \frac{3}{28} a^{12} + \frac{1}{14} a^{11} - \frac{1}{7} a^{10} - \frac{1}{14} a^{9} + \frac{3}{14} a^{7} + \frac{1}{28} a^{6} + \frac{1}{28} a^{5} - \frac{1}{4} a^{4} - \frac{5}{28} a^{2} + \frac{5}{28} a - \frac{1}{28}$, $\frac{1}{56} a^{19} - \frac{1}{56} a^{18} - \frac{3}{28} a^{17} + \frac{3}{28} a^{16} + \frac{1}{28} a^{15} + \frac{3}{14} a^{14} - \frac{13}{56} a^{13} + \frac{3}{56} a^{12} - \frac{1}{7} a^{11} - \frac{1}{7} a^{10} + \frac{1}{14} a^{9} - \frac{1}{7} a^{8} + \frac{3}{56} a^{7} + \frac{13}{56} a^{6} + \frac{13}{28} a^{5} - \frac{1}{4} a^{4} - \frac{13}{28} a^{3} + \frac{1}{7} a^{2} - \frac{11}{56} a + \frac{9}{56}$, $\frac{1}{56} a^{20} - \frac{1}{56} a^{18} + \frac{3}{28} a^{17} - \frac{1}{28} a^{16} + \frac{1}{28} a^{15} + \frac{1}{56} a^{14} - \frac{1}{14} a^{13} + \frac{13}{56} a^{12} - \frac{1}{14} a^{11} + \frac{3}{14} a^{9} - \frac{5}{56} a^{8} + \frac{3}{7} a^{7} + \frac{17}{56} a^{6} + \frac{9}{28} a^{5} - \frac{13}{28} a^{4} + \frac{5}{28} a^{3} - \frac{5}{56} a^{2} - \frac{25}{56}$, $\frac{1}{56} a^{21} - \frac{1}{56} a^{18} + \frac{1}{14} a^{16} + \frac{1}{56} a^{15} - \frac{1}{7} a^{14} + \frac{1}{7} a^{13} - \frac{5}{56} a^{12} + \frac{1}{7} a^{11} + \frac{11}{56} a^{9} + \frac{2}{7} a^{8} - \frac{2}{7} a^{7} - \frac{3}{56} a^{6} + \frac{1}{7} a^{5} - \frac{1}{14} a^{4} - \frac{17}{56} a^{3} + \frac{3}{7} a^{2} - \frac{3}{7} a - \frac{27}{56}$, $\frac{1}{392} a^{22} + \frac{1}{196} a^{21} + \frac{1}{392} a^{20} + \frac{1}{392} a^{19} - \frac{1}{392} a^{18} + \frac{11}{98} a^{17} - \frac{11}{392} a^{16} + \frac{5}{98} a^{15} + \frac{79}{392} a^{14} + \frac{55}{392} a^{13} + \frac{57}{392} a^{12} - \frac{10}{49} a^{11} - \frac{1}{8} a^{10} - \frac{31}{196} a^{9} - \frac{173}{392} a^{8} - \frac{149}{392} a^{7} + \frac{1}{8} a^{6} - \frac{19}{49} a^{5} - \frac{149}{392} a^{4} + \frac{18}{49} a^{3} + \frac{85}{392} a^{2} + \frac{19}{56} a - \frac{37}{392}$, $\frac{1}{392} a^{23} - \frac{3}{392} a^{21} - \frac{1}{392} a^{20} - \frac{3}{392} a^{19} + \frac{1}{98} a^{18} - \frac{43}{392} a^{17} + \frac{1}{28} a^{16} + \frac{25}{392} a^{15} - \frac{19}{392} a^{14} + \frac{3}{392} a^{13} - \frac{13}{196} a^{12} + \frac{27}{392} a^{11} + \frac{1}{49} a^{10} + \frac{5}{56} a^{9} + \frac{1}{392} a^{8} + \frac{95}{392} a^{7} - \frac{12}{49} a^{6} + \frac{15}{392} a^{5} + \frac{25}{196} a^{4} - \frac{15}{56} a^{3} + \frac{75}{392} a^{2} + \frac{173}{392} a + \frac{9}{196}$, $\frac{1}{392} a^{24} - \frac{1}{196} a^{21} - \frac{1}{98} a^{18} + \frac{5}{98} a^{17} + \frac{3}{196} a^{16} - \frac{9}{98} a^{15} - \frac{5}{49} a^{14} + \frac{3}{196} a^{13} - \frac{12}{49} a^{12} + \frac{5}{98} a^{11} + \frac{1}{14} a^{10} + \frac{23}{196} a^{9} + \frac{27}{98} a^{8} - \frac{11}{49} a^{7} + \frac{15}{49} a^{6} + \frac{3}{7} a^{5} - \frac{17}{196} a^{4} + \frac{3}{49} a^{3} - \frac{33}{98} a^{2} + \frac{9}{196} a - \frac{13}{392}$, $\frac{1}{392} a^{25} - \frac{3}{392} a^{21} + \frac{1}{196} a^{20} - \frac{1}{196} a^{19} - \frac{3}{392} a^{18} - \frac{4}{49} a^{17} + \frac{13}{196} a^{16} - \frac{1}{8} a^{15} - \frac{9}{196} a^{14} - \frac{5}{28} a^{13} - \frac{13}{392} a^{12} - \frac{6}{49} a^{11} + \frac{15}{98} a^{10} - \frac{37}{392} a^{9} - \frac{11}{28} a^{8} + \frac{79}{196} a^{7} + \frac{9}{56} a^{6} - \frac{16}{49} a^{5} + \frac{73}{196} a^{4} - \frac{19}{392} a^{3} - \frac{67}{196} a^{2} - \frac{111}{392} a + \frac{45}{392}$, $\frac{1}{2744} a^{26} + \frac{3}{2744} a^{25} - \frac{1}{2744} a^{23} - \frac{1}{1372} a^{22} - \frac{2}{343} a^{21} - \frac{15}{2744} a^{20} + \frac{2}{343} a^{19} + \frac{3}{343} a^{18} + \frac{17}{2744} a^{17} - \frac{38}{343} a^{16} - \frac{37}{343} a^{15} + \frac{9}{2744} a^{14} - \frac{153}{686} a^{13} - \frac{46}{343} a^{12} - \frac{471}{2744} a^{11} - \frac{153}{1372} a^{10} - \frac{3}{686} a^{9} - \frac{569}{2744} a^{8} - \frac{289}{686} a^{7} + \frac{153}{686} a^{6} + \frac{491}{2744} a^{5} + \frac{279}{686} a^{4} + \frac{277}{686} a^{3} + \frac{557}{1372} a^{2} - \frac{1315}{2744} a - \frac{15}{686}$, $\frac{1}{126224} a^{27} + \frac{5}{31556} a^{26} - \frac{5}{15778} a^{25} + \frac{41}{126224} a^{24} + \frac{11}{31556} a^{23} - \frac{37}{31556} a^{22} - \frac{13}{2254} a^{21} + \frac{271}{31556} a^{20} - \frac{517}{63112} a^{19} + \frac{73}{31556} a^{18} + \frac{1623}{15778} a^{17} + \frac{1809}{15778} a^{16} - \frac{1549}{63112} a^{15} - \frac{2703}{31556} a^{14} - \frac{12883}{63112} a^{13} - \frac{1823}{9016} a^{12} + \frac{7195}{31556} a^{11} - \frac{1293}{31556} a^{10} + \frac{3753}{31556} a^{9} + \frac{1825}{4508} a^{8} - \frac{2493}{9016} a^{7} + \frac{1699}{7889} a^{6} - \frac{123}{686} a^{5} - \frac{1244}{7889} a^{4} - \frac{523}{2576} a^{3} - \frac{5575}{15778} a^{2} - \frac{22845}{63112} a + \frac{6253}{126224}$, $\frac{1}{73588592} a^{28} + \frac{139}{36794296} a^{27} - \frac{2063}{36794296} a^{26} - \frac{3775}{10512656} a^{25} - \frac{24313}{36794296} a^{24} - \frac{2349}{3344936} a^{23} - \frac{288}{418117} a^{22} + \frac{20365}{36794296} a^{21} - \frac{276107}{36794296} a^{20} + \frac{323931}{36794296} a^{19} + \frac{2395}{1599752} a^{18} + \frac{324211}{5256328} a^{17} + \frac{2695639}{36794296} a^{16} - \frac{2644489}{36794296} a^{15} + \frac{964241}{5256328} a^{14} + \frac{384471}{9198574} a^{13} - \frac{7141649}{36794296} a^{12} + \frac{4730843}{36794296} a^{11} - \frac{446037}{18397148} a^{10} - \frac{1327201}{36794296} a^{9} - \frac{18294669}{36794296} a^{8} + \frac{2238895}{36794296} a^{7} - \frac{6295657}{36794296} a^{6} - \frac{6769445}{36794296} a^{5} + \frac{16417925}{73588592} a^{4} + \frac{6939231}{18397148} a^{3} - \frac{2652073}{9198574} a^{2} + \frac{19037589}{73588592} a - \frac{3637471}{18397148}$, $\frac{1}{132965980904100515651103455267744} a^{29} + \frac{36188735073007170380285}{9497570064578608260793103947696} a^{28} - \frac{379700217566415516910771649}{132965980904100515651103455267744} a^{27} - \frac{903176998530643750248947375}{5781129604526109376134932837728} a^{26} - \frac{5360311174915453717267809471}{4748785032289304130396551973848} a^{25} + \frac{53356696242464117338962312933}{132965980904100515651103455267744} a^{24} + \frac{2901285257293617856309237609}{6043908222913659802322884330352} a^{23} + \frac{30144482147926675483147611829}{66482990452050257825551727633872} a^{22} + \frac{118432116223276125356554297019}{16620747613012564456387931908468} a^{21} + \frac{2731772905524553404292746937}{755488527864207475290360541294} a^{20} - \frac{23538384753231694118243421651}{2890564802263054688067466418864} a^{19} - \frac{369443404532242573163460157113}{66482990452050257825551727633872} a^{18} - \frac{3801326048386382060173116043109}{33241495226025128912775863816936} a^{17} - \frac{3046156954568775063620807584853}{66482990452050257825551727633872} a^{16} + \frac{773084996515232446823181054549}{66482990452050257825551727633872} a^{15} - \frac{3696144850746994305475988545599}{66482990452050257825551727633872} a^{14} - \frac{16141477137503042892149629712397}{66482990452050257825551727633872} a^{13} - \frac{257790887402063672147266753101}{3021954111456829901161442165176} a^{12} - \frac{2331808770064783363433612969875}{9497570064578608260793103947696} a^{11} + \frac{912549050675458155326990977505}{9497570064578608260793103947696} a^{10} + \frac{130156583961223604199477382277}{3021954111456829901161442165176} a^{9} + \frac{5375444622677156215217263199237}{33241495226025128912775863816936} a^{8} + \frac{21137990440323514766981548501325}{66482990452050257825551727633872} a^{7} - \frac{439389009841565965225344860219}{6043908222913659802322884330352} a^{6} + \frac{15725209595268868452157819973359}{132965980904100515651103455267744} a^{5} - \frac{433661518439976534687795603185}{3021954111456829901161442165176} a^{4} + \frac{14001900952948143703070133256771}{132965980904100515651103455267744} a^{3} - \frac{18027355445324740739441780136253}{132965980904100515651103455267744} a^{2} - \frac{26518970972092265188802644102645}{66482990452050257825551727633872} a - \frac{41174248340291077061513561413309}{132965980904100515651103455267744}$
Class group and class number
$C_{3}\times C_{3}$, which has order $9$ (assuming GRH)
Unit group
Rank: | $15$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 383760855207.4596 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A solvable group of order 60 |
The 18 conjugacy class representatives for $D_{30}$ |
Character table for $D_{30}$ |
Intermediate fields
\(\Q(\sqrt{5}) \), 3.1.716.1, 5.1.32041.1, 6.2.64082000.2, 10.2.3208205253125.1, 15.1.6029359418000239616.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{3}$ | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{15}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{14}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | $30$ | $30$ | $15^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{15}$ | $15^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{6}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{15}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{14}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | $30$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{5}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{15}$ | $15^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
$2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
5 | Data not computed | ||||||
$179$ | $\Q_{179}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{179}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
179.2.1.2 | $x^{2} + 537$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
179.2.1.2 | $x^{2} + 537$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
179.2.1.2 | $x^{2} + 537$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
179.2.1.2 | $x^{2} + 537$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
179.2.1.2 | $x^{2} + 537$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
179.2.1.2 | $x^{2} + 537$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
179.2.1.2 | $x^{2} + 537$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
179.2.1.2 | $x^{2} + 537$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
179.2.1.2 | $x^{2} + 537$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
179.2.1.2 | $x^{2} + 537$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
179.2.1.2 | $x^{2} + 537$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
179.2.1.2 | $x^{2} + 537$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
179.2.1.2 | $x^{2} + 537$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
179.2.1.2 | $x^{2} + 537$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
1.895.2t1.a.a | $1$ | $ 5 \cdot 179 $ | \(\Q(\sqrt{-895}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
1.179.2t1.a.a | $1$ | $ 179 $ | \(\Q(\sqrt{-179}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
* | 1.5.2t1.a.a | $1$ | $ 5 $ | \(\Q(\sqrt{5}) \) | $C_2$ (as 2T1) | $1$ | $1$ |
* | 2.17900.6t3.b.a | $2$ | $ 2^{2} \cdot 5^{2} \cdot 179 $ | 6.0.11470678000.2 | $D_{6}$ (as 6T3) | $1$ | $0$ |
* | 2.716.3t2.a.a | $2$ | $ 2^{2} \cdot 179 $ | 3.1.716.1 | $S_3$ (as 3T2) | $1$ | $0$ |
* | 2.179.5t2.a.b | $2$ | $ 179 $ | 5.1.32041.1 | $D_{5}$ (as 5T2) | $1$ | $0$ |
* | 2.179.5t2.a.a | $2$ | $ 179 $ | 5.1.32041.1 | $D_{5}$ (as 5T2) | $1$ | $0$ |
* | 2.4475.10t3.a.b | $2$ | $ 5^{2} \cdot 179 $ | 10.0.574268740309375.1 | $D_{10}$ (as 10T3) | $1$ | $0$ |
* | 2.4475.10t3.a.a | $2$ | $ 5^{2} \cdot 179 $ | 10.0.574268740309375.1 | $D_{10}$ (as 10T3) | $1$ | $0$ |
* | 2.716.15t2.a.c | $2$ | $ 2^{2} \cdot 179 $ | 15.1.6029359418000239616.1 | $D_{15}$ (as 15T2) | $1$ | $0$ |
* | 2.17900.30t14.a.d | $2$ | $ 2^{2} \cdot 5^{2} \cdot 179 $ | 30.2.1109410857892705938292621064252192000000000000000.1 | $D_{30}$ (as 30T14) | $1$ | $0$ |
* | 2.716.15t2.a.d | $2$ | $ 2^{2} \cdot 179 $ | 15.1.6029359418000239616.1 | $D_{15}$ (as 15T2) | $1$ | $0$ |
* | 2.17900.30t14.a.c | $2$ | $ 2^{2} \cdot 5^{2} \cdot 179 $ | 30.2.1109410857892705938292621064252192000000000000000.1 | $D_{30}$ (as 30T14) | $1$ | $0$ |
* | 2.716.15t2.a.b | $2$ | $ 2^{2} \cdot 179 $ | 15.1.6029359418000239616.1 | $D_{15}$ (as 15T2) | $1$ | $0$ |
* | 2.17900.30t14.a.b | $2$ | $ 2^{2} \cdot 5^{2} \cdot 179 $ | 30.2.1109410857892705938292621064252192000000000000000.1 | $D_{30}$ (as 30T14) | $1$ | $0$ |
* | 2.716.15t2.a.a | $2$ | $ 2^{2} \cdot 179 $ | 15.1.6029359418000239616.1 | $D_{15}$ (as 15T2) | $1$ | $0$ |
* | 2.17900.30t14.a.a | $2$ | $ 2^{2} \cdot 5^{2} \cdot 179 $ | 30.2.1109410857892705938292621064252192000000000000000.1 | $D_{30}$ (as 30T14) | $1$ | $0$ |