Normalized defining polynomial
\( x^{30} - 15 x^{28} + 104 x^{26} - 482 x^{24} + 1708 x^{22} - 4753 x^{20} + 10608 x^{18} - 18925 x^{16} + 26563 x^{14} - 28460 x^{12} + 22463 x^{10} - 12716 x^{8} + 5049 x^{6} - 1331 x^{4} + 198 x^{2} - 11 \)
Invariants
Degree: | $30$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[10, 10]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(14414591053629993500878399466353926864896\)\(\medspace = 2^{40}\cdot 11^{27}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $21.81$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $2, 11$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $10$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{14} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{14} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{14} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{6} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{18} - \frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{19} - \frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{20} - \frac{1}{2} a^{14} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{21} - \frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2}$, $\frac{1}{2} a^{22} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{23} - \frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{24} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{25} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{26} - \frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{27} - \frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{587409483542016518} a^{28} - \frac{103020836976652849}{587409483542016518} a^{26} - \frac{6816620393891934}{293704741771008259} a^{24} + \frac{149570912943989}{5389077830660702} a^{22} - \frac{47659317464097223}{293704741771008259} a^{20} + \frac{8081375902375867}{587409483542016518} a^{18} + \frac{123471128679091941}{587409483542016518} a^{16} - \frac{16960726100570672}{293704741771008259} a^{14} + \frac{126667923291359885}{587409483542016518} a^{12} - \frac{1}{2} a^{11} - \frac{76716716275769853}{587409483542016518} a^{10} - \frac{1}{2} a^{9} - \frac{237814649392225551}{587409483542016518} a^{8} - \frac{1}{2} a^{7} - \frac{127991483737504008}{293704741771008259} a^{6} - \frac{1}{2} a^{5} - \frac{143232585408898121}{293704741771008259} a^{4} - \frac{55036218279611367}{587409483542016518} a^{2} - \frac{1}{2} a + \frac{208974501016961141}{587409483542016518}$, $\frac{1}{587409483542016518} a^{29} - \frac{103020836976652849}{587409483542016518} a^{27} - \frac{6816620393891934}{293704741771008259} a^{25} + \frac{149570912943989}{5389077830660702} a^{23} - \frac{47659317464097223}{293704741771008259} a^{21} + \frac{8081375902375867}{587409483542016518} a^{19} + \frac{123471128679091941}{587409483542016518} a^{17} - \frac{16960726100570672}{293704741771008259} a^{15} + \frac{126667923291359885}{587409483542016518} a^{13} - \frac{1}{2} a^{12} - \frac{76716716275769853}{587409483542016518} a^{11} - \frac{1}{2} a^{10} - \frac{237814649392225551}{587409483542016518} a^{9} - \frac{1}{2} a^{8} - \frac{127991483737504008}{293704741771008259} a^{7} - \frac{1}{2} a^{6} - \frac{143232585408898121}{293704741771008259} a^{5} - \frac{55036218279611367}{587409483542016518} a^{3} - \frac{1}{2} a^{2} + \frac{208974501016961141}{587409483542016518} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $19$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 397294072.2356694 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
$C_{10}\times S_3$ (as 30T12):
A solvable group of order 60 |
The 30 conjugacy class representatives for $C_{10}\times S_3$ |
Character table for $C_{10}\times S_3$ is not computed |
Intermediate fields
\(\Q(\sqrt{11}) \), 3.1.44.1, \(\Q(\zeta_{11})^+\), 6.2.340736.1, \(\Q(\zeta_{44})^+\), 15.5.35351257235385344.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | $30$ | $15^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{3}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{3}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{5}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{3}$ | $30$ | $15^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{3}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{3}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{6}$ | $30$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
2 | Data not computed | ||||||
11 | Data not computed |