Normalized defining polynomial
\( x^{30} - 3 x^{29} - 5 x^{28} + 23 x^{27} - 7 x^{26} - 43 x^{25} + 380 x^{24} - 1004 x^{23} - 505 x^{22} + 4147 x^{21} - 3960 x^{20} + 145 x^{19} + 33797 x^{18} - 104422 x^{17} + 76694 x^{16} + 164546 x^{15} - 470105 x^{14} + 125016 x^{13} + 1685293 x^{12} - 1720079 x^{11} - 1513677 x^{10} - 5549753 x^{9} + 23270864 x^{8} - 21911244 x^{7} + 5984424 x^{6} - 15339818 x^{5} + 45492605 x^{4} - 53109297 x^{3} + 35921397 x^{2} - 13035410 x + 2348809 \)
Invariants
Degree: | $30$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[0, 15]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(-893083200934004322334040290940494739136293593671\)\(\medspace = -\,3^{15}\cdot 7^{15}\cdot 11^{27}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $39.66$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $3, 7, 11$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Gal(K/\Q)|$: | $30$ | ||
This field is Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{11} a^{10} - \frac{1}{11} a^{9} + \frac{1}{11} a^{8} - \frac{1}{11} a^{7} + \frac{1}{11} a^{6} - \frac{1}{11} a^{5} + \frac{1}{11} a^{4} - \frac{1}{11} a^{3} + \frac{1}{11} a^{2} - \frac{1}{11} a + \frac{1}{11}$, $\frac{1}{11} a^{11} + \frac{1}{11}$, $\frac{1}{11} a^{12} + \frac{1}{11} a$, $\frac{1}{11} a^{13} + \frac{1}{11} a^{2}$, $\frac{1}{11} a^{14} + \frac{1}{11} a^{3}$, $\frac{1}{11} a^{15} + \frac{1}{11} a^{4}$, $\frac{1}{11} a^{16} + \frac{1}{11} a^{5}$, $\frac{1}{11} a^{17} + \frac{1}{11} a^{6}$, $\frac{1}{11} a^{18} + \frac{1}{11} a^{7}$, $\frac{1}{121} a^{19} - \frac{3}{121} a^{18} - \frac{5}{121} a^{17} + \frac{1}{121} a^{16} + \frac{4}{121} a^{15} + \frac{1}{121} a^{14} - \frac{5}{121} a^{13} - \frac{3}{121} a^{12} + \frac{1}{121} a^{11} - \frac{2}{11} a^{9} + \frac{45}{121} a^{8} + \frac{52}{121} a^{7} - \frac{38}{121} a^{6} + \frac{12}{121} a^{5} + \frac{15}{121} a^{4} - \frac{32}{121} a^{3} + \frac{50}{121} a^{2} + \frac{41}{121} a - \frac{21}{121}$, $\frac{1}{121} a^{20} - \frac{3}{121} a^{18} - \frac{3}{121} a^{17} - \frac{4}{121} a^{16} + \frac{2}{121} a^{15} - \frac{2}{121} a^{14} + \frac{4}{121} a^{13} + \frac{3}{121} a^{12} + \frac{3}{121} a^{11} - \frac{43}{121} a^{9} - \frac{3}{11} a^{8} - \frac{14}{121} a^{7} + \frac{52}{121} a^{6} + \frac{18}{121} a^{5} + \frac{24}{121} a^{4} + \frac{53}{121} a^{3} - \frac{7}{121} a^{2} - \frac{30}{121} a - \frac{41}{121}$, $\frac{1}{121} a^{21} - \frac{1}{121} a^{18} + \frac{3}{121} a^{17} + \frac{5}{121} a^{16} - \frac{1}{121} a^{15} - \frac{4}{121} a^{14} - \frac{1}{121} a^{13} + \frac{5}{121} a^{12} + \frac{3}{121} a^{11} + \frac{1}{121} a^{10} - \frac{2}{11} a^{9} + \frac{4}{11} a^{8} + \frac{54}{121} a^{7} - \frac{30}{121} a^{6} + \frac{16}{121} a^{5} + \frac{10}{121} a^{4} - \frac{37}{121} a^{3} + \frac{54}{121} a^{2} + \frac{49}{121} a - \frac{19}{121}$, $\frac{1}{121} a^{22} + \frac{2}{121} a^{11} + \frac{1}{121}$, $\frac{1}{121} a^{23} + \frac{2}{121} a^{12} + \frac{1}{121} a$, $\frac{1}{1331} a^{24} + \frac{2}{1331} a^{23} + \frac{1}{1331} a^{22} + \frac{1}{121} a^{17} + \frac{5}{121} a^{16} + \frac{5}{121} a^{15} - \frac{3}{121} a^{14} - \frac{42}{1331} a^{13} + \frac{26}{1331} a^{12} + \frac{24}{1331} a^{11} + \frac{1}{11} a^{9} + \frac{2}{11} a^{8} + \frac{56}{121} a^{6} + \frac{49}{121} a^{5} + \frac{16}{121} a^{4} + \frac{41}{121} a^{3} - \frac{648}{1331} a^{2} - \frac{97}{1331} a + \frac{628}{1331}$, $\frac{1}{3993} a^{25} - \frac{1}{3993} a^{24} + \frac{2}{1331} a^{23} - \frac{14}{3993} a^{22} - \frac{1}{363} a^{21} - \frac{1}{363} a^{20} + \frac{16}{363} a^{18} + \frac{13}{363} a^{17} + \frac{14}{363} a^{15} + \frac{41}{1331} a^{14} - \frac{2}{3993} a^{13} + \frac{122}{3993} a^{12} + \frac{82}{3993} a^{11} + \frac{10}{363} a^{10} + \frac{18}{121} a^{9} + \frac{4}{33} a^{8} - \frac{94}{363} a^{7} - \frac{3}{121} a^{6} + \frac{8}{33} a^{5} - \frac{8}{363} a^{4} + \frac{1816}{3993} a^{3} + \frac{403}{1331} a^{2} - \frac{368}{3993} a + \frac{1669}{3993}$, $\frac{1}{59621954667} a^{26} - \frac{6902629}{59621954667} a^{25} + \frac{2429246}{19873984889} a^{24} + \frac{141808192}{59621954667} a^{23} + \frac{65446792}{59621954667} a^{22} - \frac{12883714}{5420177697} a^{21} + \frac{7312964}{1806725899} a^{20} + \frac{20807641}{5420177697} a^{19} - \frac{240673475}{5420177697} a^{18} + \frac{29002280}{1806725899} a^{17} - \frac{173803255}{5420177697} a^{16} - \frac{781708403}{19873984889} a^{15} + \frac{2676435757}{59621954667} a^{14} + \frac{1624889258}{59621954667} a^{13} - \frac{1405816163}{59621954667} a^{12} - \frac{2198444218}{59621954667} a^{11} - \frac{57631727}{1806725899} a^{10} + \frac{2553487571}{5420177697} a^{9} - \frac{2066164114}{5420177697} a^{8} - \frac{712442283}{1806725899} a^{7} - \frac{2034667649}{5420177697} a^{6} + \frac{2128778389}{5420177697} a^{5} - \frac{10919268095}{59621954667} a^{4} - \frac{1991375759}{19873984889} a^{3} - \frac{5945406317}{59621954667} a^{2} - \frac{6369566315}{59621954667} a + \frac{3101436343}{19873984889}$, $\frac{1}{59621954667} a^{27} - \frac{6201568}{59621954667} a^{25} - \frac{20529320}{59621954667} a^{24} - \frac{151259893}{59621954667} a^{23} - \frac{230278261}{59621954667} a^{22} - \frac{22368829}{5420177697} a^{21} + \frac{6073660}{5420177697} a^{20} + \frac{2080190}{5420177697} a^{19} + \frac{5227009}{5420177697} a^{18} + \frac{95845283}{5420177697} a^{17} - \frac{2227311821}{59621954667} a^{16} + \frac{13344245}{5420177697} a^{15} - \frac{648775416}{19873984889} a^{14} - \frac{3604959}{19873984889} a^{13} + \frac{278930598}{19873984889} a^{12} - \frac{1189585768}{59621954667} a^{11} - \frac{80317291}{5420177697} a^{10} - \frac{2235603140}{5420177697} a^{9} + \frac{2372550578}{5420177697} a^{8} - \frac{1953151061}{5420177697} a^{7} - \frac{2476034038}{5420177697} a^{6} + \frac{3228814307}{19873984889} a^{5} - \frac{1116893809}{5420177697} a^{4} + \frac{24334959133}{59621954667} a^{3} - \frac{16260433792}{59621954667} a^{2} + \frac{743245576}{59621954667} a - \frac{4165159938}{19873984889}$, $\frac{1}{59621954667} a^{28} + \frac{1295509}{59621954667} a^{25} + \frac{286346}{5420177697} a^{24} + \frac{11822477}{19873984889} a^{23} + \frac{32461104}{19873984889} a^{22} + \frac{5263679}{5420177697} a^{21} + \frac{8975413}{5420177697} a^{20} - \frac{1213519}{5420177697} a^{19} + \frac{43960711}{5420177697} a^{18} + \frac{172433104}{19873984889} a^{17} - \frac{6691877}{5420177697} a^{16} + \frac{109468982}{5420177697} a^{15} - \frac{19707929}{59621954667} a^{14} - \frac{26043500}{1806725899} a^{13} + \frac{1710510668}{59621954667} a^{12} - \frac{2100466811}{59621954667} a^{11} + \frac{96247484}{5420177697} a^{10} - \frac{2248869737}{5420177697} a^{9} - \frac{1153044793}{5420177697} a^{8} - \frac{462856259}{5420177697} a^{7} - \frac{3158078593}{59621954667} a^{6} - \frac{481003088}{5420177697} a^{5} - \frac{1272001009}{5420177697} a^{4} - \frac{2135684208}{19873984889} a^{3} - \frac{2127177197}{5420177697} a^{2} + \frac{22646381966}{59621954667} a - \frac{26436440048}{59621954667}$, $\frac{1}{91409034650310260542863866164981827738731095611252002598801002511} a^{29} + \frac{485005753077985049467741742486573114366637662910860360}{91409034650310260542863866164981827738731095611252002598801002511} a^{28} + \frac{107034225754206635242542137583775282926162707400176926}{30469678216770086847621288721660609246243698537084000866267000837} a^{27} - \frac{253453000890069547784250677369301965387570995869672020}{30469678216770086847621288721660609246243698537084000866267000837} a^{26} + \frac{8028607433231133204351386826643847379692183935211935918666820}{91409034650310260542863866164981827738731095611252002598801002511} a^{25} - \frac{7501888702183355374740635163511395566852803775976766994169971}{91409034650310260542863866164981827738731095611252002598801002511} a^{24} + \frac{331581692266473170613500090749630909071442149650596932846871406}{91409034650310260542863866164981827738731095611252002598801002511} a^{23} + \frac{154097644647701701238304969853569948331311189490169479628386645}{91409034650310260542863866164981827738731095611252002598801002511} a^{22} - \frac{16188579529593019211021255163757014869599758065910305526232882}{8309912240937296412987624196816529794430099601022909327163727501} a^{21} + \frac{7784171014912413478538879827070277139810716612265980777033953}{2769970746979098804329208065605509931476699867007636442387909167} a^{20} + \frac{16990741772964171549769334835392786047979770333316149754199232}{8309912240937296412987624196816529794430099601022909327163727501} a^{19} - \frac{3281738350450874707365127233253229718825059173595252588805520952}{91409034650310260542863866164981827738731095611252002598801002511} a^{18} + \frac{3022114805969568560393022362214069588266393384776073899769862907}{91409034650310260542863866164981827738731095611252002598801002511} a^{17} + \frac{2790594574335523497309695171215407721489393750232635368509029438}{91409034650310260542863866164981827738731095611252002598801002511} a^{16} + \frac{1430329282601852778072210992256709869291590845124143064475745690}{91409034650310260542863866164981827738731095611252002598801002511} a^{15} - \frac{3412120521260075764584677988166704876842098710794400165590889332}{91409034650310260542863866164981827738731095611252002598801002511} a^{14} + \frac{1689852040829810091935299817969371768970963014879523667835741891}{91409034650310260542863866164981827738731095611252002598801002511} a^{13} - \frac{928206598295223653797605194672280374292235898304973360611215854}{30469678216770086847621288721660609246243698537084000866267000837} a^{12} - \frac{489256437511244714778356724732486405779959834283247956343006127}{91409034650310260542863866164981827738731095611252002598801002511} a^{11} + \frac{21765293029965881285547564063199995442931235490050668654619598}{2769970746979098804329208065605509931476699867007636442387909167} a^{10} + \frac{1319144139743794449966486544288936141286563393279087891858085360}{8309912240937296412987624196816529794430099601022909327163727501} a^{9} + \frac{2227557004849368407416859238346002440675590716883722097793262593}{8309912240937296412987624196816529794430099601022909327163727501} a^{8} - \frac{12153307590368138595209696771287273072255349322691121854298210804}{91409034650310260542863866164981827738731095611252002598801002511} a^{7} - \frac{40578396593337548124087278363131622246192744609833947810346294982}{91409034650310260542863866164981827738731095611252002598801002511} a^{6} + \frac{25185479725896285807419372181667239618477931390975991174357650781}{91409034650310260542863866164981827738731095611252002598801002511} a^{5} + \frac{11509832453915744539081594349990801596639676103584154993623975254}{30469678216770086847621288721660609246243698537084000866267000837} a^{4} + \frac{15026546135279224630020894895342049140132785204004467480874279986}{30469678216770086847621288721660609246243698537084000866267000837} a^{3} + \frac{31667800222061126547030517446642255384230988817665587613235983356}{91409034650310260542863866164981827738731095611252002598801002511} a^{2} - \frac{25631992245028695061985805899919842378524729582659982984734129313}{91409034650310260542863866164981827738731095611252002598801002511} a + \frac{13095041641551442627517432431971334781957293931181358741288436718}{30469678216770086847621288721660609246243698537084000866267000837}$
Class group and class number
$C_{2}\times C_{22}$, which has order $44$ (assuming GRH)
Unit group
Rank: | $14$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 9800307802.95059 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
$C_5\times S_3$ (as 30T2):
A solvable group of order 30 |
The 15 conjugacy class representatives for $C_5\times S_3$ |
Character table for $C_5\times S_3$ |
Intermediate fields
\(\Q(\sqrt{-231}) \), 3.1.231.1 x3, \(\Q(\zeta_{11})^+\), 6.0.12326391.1, 10.0.9630096522760791.1, 15.5.140994243189740741031.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 15 sibling: | 15.5.140994243189740741031.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | $15^{2}$ | R | $15^{2}$ | R | R | $15^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{3}$ | $15^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{15}$ | $15^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{3}$ | $15^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{3}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{15}$ | $15^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{3}$ | $15^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
$3$ | 3.10.5.1 | $x^{10} - 18 x^{6} + 81 x^{2} - 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
3.10.5.1 | $x^{10} - 18 x^{6} + 81 x^{2} - 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
3.10.5.1 | $x^{10} - 18 x^{6} + 81 x^{2} - 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
$7$ | 7.10.5.1 | $x^{10} - 98 x^{6} + 2401 x^{2} - 268912$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
7.10.5.1 | $x^{10} - 98 x^{6} + 2401 x^{2} - 268912$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
7.10.5.1 | $x^{10} - 98 x^{6} + 2401 x^{2} - 268912$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
$11$ | 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |
11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
* | 1.231.2t1.a.a | $1$ | $ 3 \cdot 7 \cdot 11 $ | \(\Q(\sqrt{-231}) \) | $C_2$ (as 2T1) | $1$ | $-1$ |
* | 1.231.10t1.b.a | $1$ | $ 3 \cdot 7 \cdot 11 $ | 10.0.9630096522760791.1 | $C_{10}$ (as 10T1) | $0$ | $-1$ |
* | 1.231.10t1.b.b | $1$ | $ 3 \cdot 7 \cdot 11 $ | 10.0.9630096522760791.1 | $C_{10}$ (as 10T1) | $0$ | $-1$ |
* | 1.11.5t1.a.a | $1$ | $ 11 $ | \(\Q(\zeta_{11})^+\) | $C_5$ (as 5T1) | $0$ | $1$ |
* | 1.231.10t1.b.c | $1$ | $ 3 \cdot 7 \cdot 11 $ | 10.0.9630096522760791.1 | $C_{10}$ (as 10T1) | $0$ | $-1$ |
* | 1.11.5t1.a.b | $1$ | $ 11 $ | \(\Q(\zeta_{11})^+\) | $C_5$ (as 5T1) | $0$ | $1$ |
* | 1.231.10t1.b.d | $1$ | $ 3 \cdot 7 \cdot 11 $ | 10.0.9630096522760791.1 | $C_{10}$ (as 10T1) | $0$ | $-1$ |
* | 1.11.5t1.a.c | $1$ | $ 11 $ | \(\Q(\zeta_{11})^+\) | $C_5$ (as 5T1) | $0$ | $1$ |
* | 1.11.5t1.a.d | $1$ | $ 11 $ | \(\Q(\zeta_{11})^+\) | $C_5$ (as 5T1) | $0$ | $1$ |
*2 | 2.231.3t2.a.a | $2$ | $ 3 \cdot 7 \cdot 11 $ | 3.1.231.1 | $S_3$ (as 3T2) | $1$ | $0$ |
*2 | 2.2541.15t4.a.a | $2$ | $ 3 \cdot 7 \cdot 11^{2}$ | 30.0.893083200934004322334040290940494739136293593671.1 | $C_5\times S_3$ (as 30T2) | $0$ | $0$ |
*2 | 2.2541.15t4.a.b | $2$ | $ 3 \cdot 7 \cdot 11^{2}$ | 30.0.893083200934004322334040290940494739136293593671.1 | $C_5\times S_3$ (as 30T2) | $0$ | $0$ |
*2 | 2.2541.15t4.a.c | $2$ | $ 3 \cdot 7 \cdot 11^{2}$ | 30.0.893083200934004322334040290940494739136293593671.1 | $C_5\times S_3$ (as 30T2) | $0$ | $0$ |
*2 | 2.2541.15t4.a.d | $2$ | $ 3 \cdot 7 \cdot 11^{2}$ | 30.0.893083200934004322334040290940494739136293593671.1 | $C_5\times S_3$ (as 30T2) | $0$ | $0$ |