Normalized defining polynomial
\( x^{30} - 4 x^{29} - 32 x^{28} + 92 x^{27} + 588 x^{26} - 752 x^{25} - 6717 x^{24} - 805 x^{23} + 44049 x^{22} + 54263 x^{21} - 93757 x^{20} - 350454 x^{19} - 591742 x^{18} + 307201 x^{17} + 3600412 x^{16} + 5669890 x^{15} - 632841 x^{14} - 17605194 x^{13} - 34361042 x^{12} - 23087625 x^{11} + 45815379 x^{10} + 119941341 x^{9} + 85868062 x^{8} - 30516460 x^{7} - 62011703 x^{6} + 46150369 x^{5} + 155790202 x^{4} + 147686157 x^{3} + 67768188 x^{2} + 10788948 x + 751689 \)
Invariants
Degree: | $30$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[0, 15]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(-8851375005191383462430321349782942769050796640392327\)\(\medspace = -\,3^{14}\cdot 7^{25}\cdot 53^{14}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $53.90$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $3, 7, 53$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $2$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{3} a^{16} - \frac{1}{3} a^{15} + \frac{1}{3} a^{13} - \frac{1}{3} a^{12} + \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{17} - \frac{1}{3} a^{15} + \frac{1}{3} a^{14} - \frac{1}{3} a^{12} + \frac{1}{3} a^{11} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{18} + \frac{1}{3} a^{10} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{19} + \frac{1}{3} a^{11} + \frac{1}{3} a^{3}$, $\frac{1}{3} a^{20} + \frac{1}{3} a^{12} + \frac{1}{3} a^{4}$, $\frac{1}{3} a^{21} + \frac{1}{3} a^{13} + \frac{1}{3} a^{5}$, $\frac{1}{51} a^{22} + \frac{4}{51} a^{21} + \frac{2}{17} a^{20} + \frac{1}{17} a^{19} + \frac{1}{17} a^{18} - \frac{4}{51} a^{17} - \frac{2}{17} a^{16} - \frac{11}{51} a^{15} - \frac{4}{17} a^{14} + \frac{4}{51} a^{13} - \frac{5}{51} a^{12} - \frac{19}{51} a^{11} - \frac{4}{17} a^{10} + \frac{2}{17} a^{9} + \frac{2}{51} a^{8} - \frac{20}{51} a^{7} + \frac{1}{51} a^{6} + \frac{8}{17} a^{5} - \frac{5}{51} a^{4} + \frac{8}{17} a^{3} - \frac{22}{51} a^{2} - \frac{2}{17} a$, $\frac{1}{8109} a^{23} + \frac{23}{8109} a^{22} - \frac{139}{8109} a^{21} + \frac{47}{901} a^{20} + \frac{485}{8109} a^{19} - \frac{355}{8109} a^{18} - \frac{407}{2703} a^{17} - \frac{992}{8109} a^{16} - \frac{26}{53} a^{15} + \frac{3839}{8109} a^{14} - \frac{968}{2703} a^{13} - \frac{23}{153} a^{12} - \frac{1648}{8109} a^{11} + \frac{691}{2703} a^{10} - \frac{2893}{8109} a^{9} + \frac{103}{8109} a^{8} - \frac{2198}{8109} a^{7} - \frac{2456}{8109} a^{6} + \frac{700}{2703} a^{5} + \frac{283}{901} a^{4} - \frac{722}{8109} a^{3} + \frac{427}{901} a^{2} + \frac{64}{2703} a - \frac{21}{53}$, $\frac{1}{1694781} a^{24} + \frac{5}{1694781} a^{23} - \frac{10570}{1694781} a^{22} + \frac{92135}{564927} a^{21} + \frac{105761}{1694781} a^{20} - \frac{1633}{89199} a^{19} + \frac{3751}{51357} a^{18} - \frac{68690}{1694781} a^{17} - \frac{17909}{188309} a^{16} + \frac{177521}{1694781} a^{15} + \frac{7358}{51357} a^{14} + \frac{332642}{1694781} a^{13} - \frac{462112}{1694781} a^{12} + \frac{15821}{51357} a^{11} - \frac{136243}{1694781} a^{10} + \frac{632686}{1694781} a^{9} + \frac{657070}{1694781} a^{8} - \frac{613997}{1694781} a^{7} - \frac{114944}{564927} a^{6} - \frac{122521}{564927} a^{5} - \frac{374903}{1694781} a^{4} + \frac{21110}{188309} a^{3} + \frac{83801}{564927} a^{2} + \frac{61799}{188309} a - \frac{2378}{11077}$, $\frac{1}{1694781} a^{25} + \frac{64}{1694781} a^{23} + \frac{9485}{1694781} a^{22} + \frac{6070}{154071} a^{21} - \frac{5564}{1694781} a^{20} - \frac{200737}{1694781} a^{19} + \frac{47866}{1694781} a^{18} + \frac{160951}{1694781} a^{17} + \frac{13457}{1694781} a^{16} + \frac{453086}{1694781} a^{15} - \frac{71344}{1694781} a^{14} - \frac{313292}{1694781} a^{13} + \frac{30155}{89199} a^{12} + \frac{589559}{1694781} a^{11} + \frac{82667}{564927} a^{10} - \frac{577081}{1694781} a^{9} - \frac{541762}{1694781} a^{8} + \frac{198970}{1694781} a^{7} + \frac{18176}{51357} a^{6} + \frac{10898}{154071} a^{5} + \frac{401701}{1694781} a^{4} + \frac{520}{11077} a^{3} - \frac{137677}{564927} a^{2} + \frac{66280}{188309} a - \frac{1486}{11077}$, $\frac{1}{1694781} a^{26} - \frac{31}{1694781} a^{23} + \frac{46}{1694781} a^{22} + \frac{98567}{1694781} a^{21} + \frac{24550}{564927} a^{20} - \frac{1315}{33231} a^{19} + \frac{122528}{1694781} a^{18} + \frac{251980}{1694781} a^{17} - \frac{7339}{154071} a^{16} + \frac{54622}{188309} a^{15} + \frac{417680}{1694781} a^{14} - \frac{219053}{564927} a^{13} + \frac{533752}{1694781} a^{12} + \frac{565186}{1694781} a^{11} + \frac{181286}{564927} a^{10} + \frac{457850}{1694781} a^{9} + \frac{200216}{1694781} a^{8} + \frac{126469}{1694781} a^{7} - \frac{7577}{33231} a^{6} + \frac{327334}{1694781} a^{5} - \frac{644869}{1694781} a^{4} - \frac{50992}{1694781} a^{3} - \frac{80128}{188309} a^{2} - \frac{167806}{564927} a + \frac{1921}{11077}$, $\frac{1}{5084343} a^{27} - \frac{1}{5084343} a^{26} + \frac{1}{5084343} a^{24} - \frac{181}{5084343} a^{23} + \frac{16582}{1694781} a^{22} - \frac{94225}{5084343} a^{21} - \frac{787973}{5084343} a^{20} - \frac{108764}{5084343} a^{19} + \frac{17264}{1694781} a^{18} + \frac{172835}{5084343} a^{17} + \frac{14642}{299079} a^{16} + \frac{385018}{1694781} a^{15} - \frac{11366}{299079} a^{14} + \frac{7204}{299079} a^{13} - \frac{488974}{5084343} a^{12} - \frac{32741}{89199} a^{11} + \frac{26019}{188309} a^{10} - \frac{56647}{1694781} a^{9} - \frac{363161}{1694781} a^{8} - \frac{15118}{51357} a^{7} + \frac{34087}{99693} a^{6} - \frac{1914707}{5084343} a^{5} - \frac{969739}{5084343} a^{4} + \frac{530224}{1694781} a^{3} + \frac{402124}{1694781} a^{2} - \frac{8411}{188309} a - \frac{2777}{33231}$, $\frac{1}{2506581099} a^{28} - \frac{157}{2506581099} a^{27} + \frac{131}{835527033} a^{26} - \frac{707}{2506581099} a^{25} + \frac{401}{2506581099} a^{24} - \frac{1933}{43975107} a^{23} - \frac{7616461}{2506581099} a^{22} - \frac{247049072}{2506581099} a^{21} + \frac{250713010}{2506581099} a^{20} + \frac{31436755}{278509011} a^{19} + \frac{315730934}{2506581099} a^{18} + \frac{431920}{2506581099} a^{17} - \frac{651784}{92836337} a^{16} + \frac{1044972518}{2506581099} a^{15} - \frac{941542927}{2506581099} a^{14} + \frac{718809554}{2506581099} a^{13} - \frac{236056894}{835527033} a^{12} + \frac{2417695}{5254887} a^{11} + \frac{204527228}{835527033} a^{10} + \frac{18497759}{835527033} a^{9} - \frac{121706132}{835527033} a^{8} + \frac{10692005}{49148649} a^{7} + \frac{317576617}{2506581099} a^{6} + \frac{1143896495}{2506581099} a^{5} - \frac{241321297}{835527033} a^{4} - \frac{5258386}{278509011} a^{3} - \frac{32497403}{278509011} a^{2} - \frac{103801}{862257} a - \frac{25055}{321233}$, $\frac{1}{100522270381252986846117061108478613973472491442074696302603150542356542787146918867} a^{29} + \frac{28988331187906842321876952695097548878767045664252057021502882521674171}{33507423460417662282039020369492871324490830480691565434201050180785514262382306289} a^{28} - \frac{190870950223088284207922787060053596813592704953290656030249766701093152923}{3046129405492514752912638215408442847680984589153778675836459107344137660216573299} a^{27} + \frac{149698896550460803485854533951578435445973549148622432356853589456623624457}{3723047051157518031337668929943652369387870053410173937133450020087279362486922921} a^{26} + \frac{2814342695324367637287930689761971378145451345928408577518931461996791930752}{11169141153472554094013006789830957108163610160230521811400350060261838087460768763} a^{25} - \frac{8642103325008859058758605429244064405156898964288126206911113175624890631239}{33507423460417662282039020369492871324490830480691565434201050180785514262382306289} a^{24} + \frac{3054460247404546985922120050621906026145421710791949537804881081754517191947804}{100522270381252986846117061108478613973472491442074696302603150542356542787146918867} a^{23} - \frac{114173270238134663480421841644122038349112326741092112414746377154080137773322185}{33507423460417662282039020369492871324490830480691565434201050180785514262382306289} a^{22} + \frac{123068449036757822801907104038002541258796896897559611685029002149604479726956199}{1896646610967037487662586058650539886291933800793862194388738689478425335606545639} a^{21} - \frac{12654392952077889191110741320800830727555766874913165701363706837589073108753593406}{100522270381252986846117061108478613973472491442074696302603150542356542787146918867} a^{20} + \frac{5143071052547948398716111808235707010882466294759665774548935805979116970137832503}{33507423460417662282039020369492871324490830480691565434201050180785514262382306289} a^{19} - \frac{216253848153983554592383735151191456932706372370421909917410503709269049290423059}{3723047051157518031337668929943652369387870053410173937133450020087279362486922921} a^{18} - \frac{460737614373010527508592880907409421221100684274288023602800257179425358172642654}{3723047051157518031337668929943652369387870053410173937133450020087279362486922921} a^{17} - \frac{126214180502846720396496311428878616743650781721434052801471633631717579152797815}{1155428395186815940759966219637685218085890706230743635662105178647776353875251941} a^{16} + \frac{526518998602693377761712570126713664326433689026436451304585770548798015365424210}{3466285185560447822279898658913055654257672118692230906986315535943329061625755823} a^{15} - \frac{358844333786848059758011609617297575181676200433817509904324948851701079127286865}{11169141153472554094013006789830957108163610160230521811400350060261838087460768763} a^{14} + \frac{6594132777637477890811421473955076481786415901522506334730777541633201713625338063}{100522270381252986846117061108478613973472491442074696302603150542356542787146918867} a^{13} - \frac{15934666237937150147343079037292021616028285355851892744492089605426097280121718239}{100522270381252986846117061108478613973472491442074696302603150542356542787146918867} a^{12} - \frac{12872950802270582631538033122142281872143874259042144572636714238008002989516142949}{33507423460417662282039020369492871324490830480691565434201050180785514262382306289} a^{11} - \frac{6309100189059383269000863659953234041524020115607737364807679908166223979249294548}{33507423460417662282039020369492871324490830480691565434201050180785514262382306289} a^{10} - \frac{230866178605831669047388269038830919541722113821276189955416829114034615898791060}{11169141153472554094013006789830957108163610160230521811400350060261838087460768763} a^{9} + \frac{103441735402759308376510527863527220010594221250480738751548073954923885259732156}{657008303145444358471353340578291594597859421190030694788255885897755181615339339} a^{8} - \frac{43508226510466319161584035845020274170236615956870536327271939497813180899258941004}{100522270381252986846117061108478613973472491442074696302603150542356542787146918867} a^{7} - \frac{2844598624605909829526372213221171908829230949116907101574565156944929388602623206}{11169141153472554094013006789830957108163610160230521811400350060261838087460768763} a^{6} + \frac{4688221283667227994675970430783934045648308197878346396488644344055222933215934840}{33507423460417662282039020369492871324490830480691565434201050180785514262382306289} a^{5} + \frac{428068567769707122447168369815507373801753113077579581635214699080190157694546513}{5290645809539630886637740058340979682814341654846036647505428975913502251955100993} a^{4} + \frac{3649251369576561721203201873313764048186945370468506453132291450471537575637864584}{33507423460417662282039020369492871324490830480691565434201050180785514262382306289} a^{3} + \frac{704862693573237244864774695955088123311057847948590879102440804295817960396475278}{1971024909436333075414060021734874783793578263570092084364767657693265544846018017} a^{2} - \frac{18545517547735499931315862274658345534189943949852717702252168485426006932331726}{38647547243849668145373725916370093799874083599413570281662110935162069506784667} a + \frac{673457886300274473058897116378634141786075143023130437411303904504140811137842}{2273385131991156949727866230374711399992593152906680604803653584421298206281451}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
Rank: | $14$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 44958053496730.96 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A solvable group of order 60 |
The 18 conjugacy class representatives for $D_{30}$ |
Character table for $D_{30}$ |
Intermediate fields
\(\Q(\sqrt{-7}) \), 3.1.7791.1, 5.1.25281.1, 6.0.424897767.1, 10.0.10741840447527.1, 15.1.725705259120295972581231.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | $15^{2}$ | R | $30$ | R | ${\href{/LocalNumberField/11.2.0.1}{2} }^{14}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | $30$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{15}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{15}$ | $15^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{14}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{15}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{6}$ | $30$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{6}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{15}$ | R | ${\href{/LocalNumberField/59.2.0.1}{2} }^{15}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
$3$ | 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
7 | Data not computed | ||||||
$53$ | $\Q_{53}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{53}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
53.2.1.2 | $x^{2} + 106$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
53.2.1.2 | $x^{2} + 106$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
53.2.1.2 | $x^{2} + 106$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
53.2.1.2 | $x^{2} + 106$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
53.2.1.2 | $x^{2} + 106$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
53.2.1.2 | $x^{2} + 106$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
53.2.1.2 | $x^{2} + 106$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
53.2.1.2 | $x^{2} + 106$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
53.2.1.2 | $x^{2} + 106$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
53.2.1.2 | $x^{2} + 106$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
53.2.1.2 | $x^{2} + 106$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
53.2.1.2 | $x^{2} + 106$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
53.2.1.2 | $x^{2} + 106$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
53.2.1.2 | $x^{2} + 106$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
* | 1.7.2t1.a.a | $1$ | $ 7 $ | \(\Q(\sqrt{-7}) \) | $C_2$ (as 2T1) | $1$ | $-1$ |
1.159.2t1.a.a | $1$ | $ 3 \cdot 53 $ | \(\Q(\sqrt{-159}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
1.1113.2t1.a.a | $1$ | $ 3 \cdot 7 \cdot 53 $ | \(\Q(\sqrt{1113}) \) | $C_2$ (as 2T1) | $1$ | $1$ | |
* | 2.7791.6t3.a.a | $2$ | $ 3 \cdot 7^{2} \cdot 53 $ | 6.0.424897767.1 | $D_{6}$ (as 6T3) | $1$ | $0$ |
* | 2.7791.3t2.a.a | $2$ | $ 3 \cdot 7^{2} \cdot 53 $ | 3.1.7791.1 | $S_3$ (as 3T2) | $1$ | $0$ |
* | 2.159.5t2.a.b | $2$ | $ 3 \cdot 53 $ | 5.1.25281.1 | $D_{5}$ (as 5T2) | $1$ | $0$ |
* | 2.159.5t2.a.a | $2$ | $ 3 \cdot 53 $ | 5.1.25281.1 | $D_{5}$ (as 5T2) | $1$ | $0$ |
* | 2.7791.10t3.b.b | $2$ | $ 3 \cdot 7^{2} \cdot 53 $ | 10.0.10741840447527.1 | $D_{10}$ (as 10T3) | $1$ | $0$ |
* | 2.7791.10t3.b.a | $2$ | $ 3 \cdot 7^{2} \cdot 53 $ | 10.0.10741840447527.1 | $D_{10}$ (as 10T3) | $1$ | $0$ |
* | 2.7791.15t2.a.b | $2$ | $ 3 \cdot 7^{2} \cdot 53 $ | 15.1.725705259120295972581231.1 | $D_{15}$ (as 15T2) | $1$ | $0$ |
* | 2.7791.30t14.b.c | $2$ | $ 3 \cdot 7^{2} \cdot 53 $ | 30.0.8851375005191383462430321349782942769050796640392327.1 | $D_{30}$ (as 30T14) | $1$ | $0$ |
* | 2.7791.15t2.a.a | $2$ | $ 3 \cdot 7^{2} \cdot 53 $ | 15.1.725705259120295972581231.1 | $D_{15}$ (as 15T2) | $1$ | $0$ |
* | 2.7791.30t14.b.d | $2$ | $ 3 \cdot 7^{2} \cdot 53 $ | 30.0.8851375005191383462430321349782942769050796640392327.1 | $D_{30}$ (as 30T14) | $1$ | $0$ |
* | 2.7791.30t14.b.a | $2$ | $ 3 \cdot 7^{2} \cdot 53 $ | 30.0.8851375005191383462430321349782942769050796640392327.1 | $D_{30}$ (as 30T14) | $1$ | $0$ |
* | 2.7791.30t14.b.b | $2$ | $ 3 \cdot 7^{2} \cdot 53 $ | 30.0.8851375005191383462430321349782942769050796640392327.1 | $D_{30}$ (as 30T14) | $1$ | $0$ |
* | 2.7791.15t2.a.d | $2$ | $ 3 \cdot 7^{2} \cdot 53 $ | 15.1.725705259120295972581231.1 | $D_{15}$ (as 15T2) | $1$ | $0$ |
* | 2.7791.15t2.a.c | $2$ | $ 3 \cdot 7^{2} \cdot 53 $ | 15.1.725705259120295972581231.1 | $D_{15}$ (as 15T2) | $1$ | $0$ |