Normalized defining polynomial
\( x^{30} + 45 x^{28} + 850 x^{26} + 8863 x^{24} + 56474 x^{22} + 230106 x^{20} + 610963 x^{18} + 1061766 x^{16} + 1203495 x^{14} + 883132 x^{12} + 414061 x^{10} + 121105 x^{8} + 21162 x^{6} + 2035 x^{4} + 90 x^{2} + 1 \)
Invariants
| Degree: | $30$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 15]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-843888588175611025887990382060441445435213803945984=-\,2^{30}\cdot 7^{20}\cdot 11^{24}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $49.84$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(308=2^{2}\cdot 7\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{308}(1,·)$, $\chi_{308}(67,·)$, $\chi_{308}(135,·)$, $\chi_{308}(9,·)$, $\chi_{308}(267,·)$, $\chi_{308}(141,·)$, $\chi_{308}(207,·)$, $\chi_{308}(15,·)$, $\chi_{308}(81,·)$, $\chi_{308}(291,·)$, $\chi_{308}(23,·)$, $\chi_{308}(225,·)$, $\chi_{308}(25,·)$, $\chi_{308}(155,·)$, $\chi_{308}(221,·)$, $\chi_{308}(289,·)$, $\chi_{308}(163,·)$, $\chi_{308}(113,·)$, $\chi_{308}(37,·)$, $\chi_{308}(295,·)$, $\chi_{308}(169,·)$, $\chi_{308}(71,·)$, $\chi_{308}(93,·)$, $\chi_{308}(177,·)$, $\chi_{308}(179,·)$, $\chi_{308}(235,·)$, $\chi_{308}(53,·)$, $\chi_{308}(137,·)$, $\chi_{308}(247,·)$, $\chi_{308}(191,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $\frac{1}{43} a^{24} + \frac{17}{43} a^{22} - \frac{3}{43} a^{20} + \frac{8}{43} a^{18} + \frac{9}{43} a^{16} - \frac{8}{43} a^{14} + \frac{2}{43} a^{12} - \frac{20}{43} a^{10} + \frac{19}{43} a^{8} + \frac{11}{43} a^{6} + \frac{14}{43} a^{4} - \frac{3}{43} a^{2} + \frac{6}{43}$, $\frac{1}{43} a^{25} + \frac{17}{43} a^{23} - \frac{3}{43} a^{21} + \frac{8}{43} a^{19} + \frac{9}{43} a^{17} - \frac{8}{43} a^{15} + \frac{2}{43} a^{13} - \frac{20}{43} a^{11} + \frac{19}{43} a^{9} + \frac{11}{43} a^{7} + \frac{14}{43} a^{5} - \frac{3}{43} a^{3} + \frac{6}{43} a$, $\frac{1}{43} a^{26} + \frac{9}{43} a^{22} + \frac{16}{43} a^{20} + \frac{2}{43} a^{18} + \frac{11}{43} a^{16} + \frac{9}{43} a^{14} - \frac{11}{43} a^{12} + \frac{15}{43} a^{10} - \frac{11}{43} a^{8} - \frac{1}{43} a^{6} + \frac{17}{43} a^{4} + \frac{14}{43} a^{2} - \frac{16}{43}$, $\frac{1}{43} a^{27} + \frac{9}{43} a^{23} + \frac{16}{43} a^{21} + \frac{2}{43} a^{19} + \frac{11}{43} a^{17} + \frac{9}{43} a^{15} - \frac{11}{43} a^{13} + \frac{15}{43} a^{11} - \frac{11}{43} a^{9} - \frac{1}{43} a^{7} + \frac{17}{43} a^{5} + \frac{14}{43} a^{3} - \frac{16}{43} a$, $\frac{1}{7479011552904015893} a^{28} + \frac{27872587207794719}{7479011552904015893} a^{26} + \frac{18027665817139876}{7479011552904015893} a^{24} + \frac{2570561645828795715}{7479011552904015893} a^{22} + \frac{3334895558423367689}{7479011552904015893} a^{20} + \frac{738691988724068331}{7479011552904015893} a^{18} - \frac{2688289276327114803}{7479011552904015893} a^{16} + \frac{1689182633995547860}{7479011552904015893} a^{14} + \frac{1705267465324045131}{7479011552904015893} a^{12} + \frac{2638757463483278482}{7479011552904015893} a^{10} + \frac{2469847977549552283}{7479011552904015893} a^{8} - \frac{984848737265846731}{7479011552904015893} a^{6} - \frac{900055511948140602}{7479011552904015893} a^{4} - \frac{843257220000486907}{7479011552904015893} a^{2} + \frac{2626829118364790056}{7479011552904015893}$, $\frac{1}{7479011552904015893} a^{29} + \frac{27872587207794719}{7479011552904015893} a^{27} + \frac{18027665817139876}{7479011552904015893} a^{25} + \frac{2570561645828795715}{7479011552904015893} a^{23} + \frac{3334895558423367689}{7479011552904015893} a^{21} + \frac{738691988724068331}{7479011552904015893} a^{19} - \frac{2688289276327114803}{7479011552904015893} a^{17} + \frac{1689182633995547860}{7479011552904015893} a^{15} + \frac{1705267465324045131}{7479011552904015893} a^{13} + \frac{2638757463483278482}{7479011552904015893} a^{11} + \frac{2469847977549552283}{7479011552904015893} a^{9} - \frac{984848737265846731}{7479011552904015893} a^{7} - \frac{900055511948140602}{7479011552904015893} a^{5} - \frac{843257220000486907}{7479011552904015893} a^{3} + \frac{2626829118364790056}{7479011552904015893} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{362}$, which has order $2896$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{240426186645}{547969096093} a^{29} + \frac{10760758044601}{547969096093} a^{27} + \frac{201730137486763}{547969096093} a^{25} + \frac{2081105198802305}{547969096093} a^{23} + \frac{13057742718079493}{547969096093} a^{21} + \frac{52003601010595029}{547969096093} a^{19} + \frac{133345846002344315}{547969096093} a^{17} + \frac{219323822981147224}{547969096093} a^{15} + \frac{227195452499811886}{547969096093} a^{13} + \frac{143059303792294046}{547969096093} a^{11} + \frac{50852416356835306}{547969096093} a^{9} + \frac{8349729121173316}{547969096093} a^{7} + \frac{81167359720271}{547969096093} a^{5} - \frac{110889614614127}{547969096093} a^{3} - \frac{6094826512950}{547969096093} a \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4697581952.048968 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 30 |
| The 30 conjugacy class representatives for $C_{30}$ |
| Character table for $C_{30}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-1}) \), \(\Q(\zeta_{7})^+\), \(\Q(\zeta_{11})^+\), 6.0.153664.1, 10.0.219503494144.1, 15.15.886528337182930278529.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $30$ | $15^{2}$ | R | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{6}$ | $15^{2}$ | $30$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{5}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{6}$ | $30$ | $15^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{6}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{15}$ | $30$ | $15^{2}$ | $30$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| 11 | Data not computed | ||||||