Properties

Label 30.0.832...647.1
Degree $30$
Signature $[0, 15]$
Discriminant $-8.320\times 10^{56}$
Root discriminant \(78.95\)
Ramified primes $7,31$
Class number $23771$ (GRH)
Class group [23771] (GRH)
Galois group $C_{30}$ (as 30T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^30 - x^29 + 13*x^28 - 4*x^27 + 138*x^26 + 83*x^25 + 1481*x^24 - 6544*x^23 + 25941*x^22 - 74141*x^21 + 246113*x^20 - 591905*x^19 + 1995079*x^18 - 3985130*x^17 + 7897623*x^16 - 14461184*x^15 + 26509376*x^14 - 40183766*x^13 + 66639441*x^12 - 17174668*x^11 + 18785418*x^10 - 6252286*x^9 + 5288663*x^8 - 1844854*x^7 + 1098726*x^6 + 150145*x^5 + 265400*x^4 + 11125*x^3 + 66250*x^2 - 3125*x + 15625)
 
gp: K = bnfinit(y^30 - y^29 + 13*y^28 - 4*y^27 + 138*y^26 + 83*y^25 + 1481*y^24 - 6544*y^23 + 25941*y^22 - 74141*y^21 + 246113*y^20 - 591905*y^19 + 1995079*y^18 - 3985130*y^17 + 7897623*y^16 - 14461184*y^15 + 26509376*y^14 - 40183766*y^13 + 66639441*y^12 - 17174668*y^11 + 18785418*y^10 - 6252286*y^9 + 5288663*y^8 - 1844854*y^7 + 1098726*y^6 + 150145*y^5 + 265400*y^4 + 11125*y^3 + 66250*y^2 - 3125*y + 15625, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^30 - x^29 + 13*x^28 - 4*x^27 + 138*x^26 + 83*x^25 + 1481*x^24 - 6544*x^23 + 25941*x^22 - 74141*x^21 + 246113*x^20 - 591905*x^19 + 1995079*x^18 - 3985130*x^17 + 7897623*x^16 - 14461184*x^15 + 26509376*x^14 - 40183766*x^13 + 66639441*x^12 - 17174668*x^11 + 18785418*x^10 - 6252286*x^9 + 5288663*x^8 - 1844854*x^7 + 1098726*x^6 + 150145*x^5 + 265400*x^4 + 11125*x^3 + 66250*x^2 - 3125*x + 15625);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^30 - x^29 + 13*x^28 - 4*x^27 + 138*x^26 + 83*x^25 + 1481*x^24 - 6544*x^23 + 25941*x^22 - 74141*x^21 + 246113*x^20 - 591905*x^19 + 1995079*x^18 - 3985130*x^17 + 7897623*x^16 - 14461184*x^15 + 26509376*x^14 - 40183766*x^13 + 66639441*x^12 - 17174668*x^11 + 18785418*x^10 - 6252286*x^9 + 5288663*x^8 - 1844854*x^7 + 1098726*x^6 + 150145*x^5 + 265400*x^4 + 11125*x^3 + 66250*x^2 - 3125*x + 15625)
 

\( x^{30} - x^{29} + 13 x^{28} - 4 x^{27} + 138 x^{26} + 83 x^{25} + 1481 x^{24} - 6544 x^{23} + \cdots + 15625 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $30$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 15]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-832015950863087654302330210882647132596170473948590696647\) \(\medspace = -\,7^{25}\cdot 31^{24}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(78.95\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $7^{5/6}31^{4/5}\approx 78.94737999029167$
Ramified primes:   \(7\), \(31\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-7}) \)
$\card{ \Gal(K/\Q) }$:  $30$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(217=7\cdot 31\)
Dirichlet character group:    $\lbrace$$\chi_{217}(128,·)$, $\chi_{217}(1,·)$, $\chi_{217}(2,·)$, $\chi_{217}(4,·)$, $\chi_{217}(97,·)$, $\chi_{217}(8,·)$, $\chi_{217}(202,·)$, $\chi_{217}(66,·)$, $\chi_{217}(194,·)$, $\chi_{217}(16,·)$, $\chi_{217}(78,·)$, $\chi_{217}(132,·)$, $\chi_{217}(156,·)$, $\chi_{217}(157,·)$, $\chi_{217}(94,·)$, $\chi_{217}(159,·)$, $\chi_{217}(32,·)$, $\chi_{217}(33,·)$, $\chi_{217}(163,·)$, $\chi_{217}(101,·)$, $\chi_{217}(39,·)$, $\chi_{217}(64,·)$, $\chi_{217}(95,·)$, $\chi_{217}(171,·)$, $\chi_{217}(109,·)$, $\chi_{217}(47,·)$, $\chi_{217}(187,·)$, $\chi_{217}(188,·)$, $\chi_{217}(125,·)$, $\chi_{217}(190,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{16384}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{5}a^{19}+\frac{2}{5}a^{18}+\frac{1}{5}a^{15}+\frac{2}{5}a^{14}+\frac{2}{5}a^{12}+\frac{2}{5}a^{10}+\frac{2}{5}a^{8}+\frac{2}{5}a^{6}-\frac{1}{5}a^{5}+\frac{2}{5}a^{2}-\frac{1}{5}a$, $\frac{1}{5}a^{20}+\frac{1}{5}a^{18}+\frac{1}{5}a^{16}+\frac{1}{5}a^{14}+\frac{2}{5}a^{13}+\frac{1}{5}a^{12}+\frac{2}{5}a^{11}+\frac{1}{5}a^{10}+\frac{2}{5}a^{9}+\frac{1}{5}a^{8}+\frac{2}{5}a^{7}+\frac{2}{5}a^{5}+\frac{2}{5}a^{3}+\frac{2}{5}a$, $\frac{1}{5}a^{21}-\frac{2}{5}a^{18}+\frac{1}{5}a^{17}+\frac{1}{5}a^{13}+\frac{1}{5}a^{11}+\frac{1}{5}a^{9}+\frac{1}{5}a^{5}+\frac{2}{5}a^{4}+\frac{1}{5}a$, $\frac{1}{5}a^{22}+\frac{2}{5}a^{15}-\frac{1}{5}a^{8}-\frac{2}{5}a$, $\frac{1}{5}a^{23}+\frac{2}{5}a^{16}-\frac{1}{5}a^{9}-\frac{2}{5}a^{2}$, $\frac{1}{5}a^{24}+\frac{2}{5}a^{17}-\frac{1}{5}a^{10}-\frac{2}{5}a^{3}$, $\frac{1}{12\!\cdots\!15}a^{25}+\frac{11\!\cdots\!59}{12\!\cdots\!15}a^{24}+\frac{22\!\cdots\!21}{24\!\cdots\!23}a^{23}-\frac{10\!\cdots\!14}{12\!\cdots\!15}a^{22}-\frac{47\!\cdots\!41}{12\!\cdots\!15}a^{21}-\frac{11\!\cdots\!94}{12\!\cdots\!15}a^{20}-\frac{60\!\cdots\!93}{12\!\cdots\!15}a^{19}-\frac{36\!\cdots\!76}{12\!\cdots\!15}a^{18}+\frac{55\!\cdots\!82}{12\!\cdots\!15}a^{17}+\frac{77\!\cdots\!11}{12\!\cdots\!15}a^{16}+\frac{15\!\cdots\!09}{12\!\cdots\!15}a^{15}+\frac{78\!\cdots\!38}{24\!\cdots\!23}a^{14}+\frac{19\!\cdots\!56}{12\!\cdots\!15}a^{13}+\frac{35\!\cdots\!71}{24\!\cdots\!23}a^{12}-\frac{69\!\cdots\!05}{24\!\cdots\!23}a^{11}+\frac{42\!\cdots\!91}{12\!\cdots\!15}a^{10}-\frac{31\!\cdots\!29}{12\!\cdots\!15}a^{9}-\frac{36\!\cdots\!86}{12\!\cdots\!15}a^{8}+\frac{25\!\cdots\!62}{12\!\cdots\!15}a^{7}+\frac{96\!\cdots\!74}{12\!\cdots\!15}a^{6}+\frac{18\!\cdots\!59}{12\!\cdots\!15}a^{5}-\frac{36\!\cdots\!04}{12\!\cdots\!15}a^{4}+\frac{34\!\cdots\!79}{12\!\cdots\!15}a^{3}+\frac{46\!\cdots\!29}{12\!\cdots\!15}a^{2}-\frac{58\!\cdots\!03}{12\!\cdots\!15}a-\frac{40\!\cdots\!00}{24\!\cdots\!23}$, $\frac{1}{60\!\cdots\!75}a^{26}-\frac{1}{60\!\cdots\!75}a^{25}+\frac{27\!\cdots\!03}{60\!\cdots\!75}a^{24}+\frac{91\!\cdots\!21}{60\!\cdots\!75}a^{23}-\frac{45\!\cdots\!52}{60\!\cdots\!75}a^{22}-\frac{43\!\cdots\!27}{60\!\cdots\!75}a^{21}-\frac{18\!\cdots\!09}{60\!\cdots\!75}a^{20}-\frac{30\!\cdots\!84}{60\!\cdots\!75}a^{19}+\frac{28\!\cdots\!16}{60\!\cdots\!75}a^{18}-\frac{89\!\cdots\!71}{60\!\cdots\!75}a^{17}-\frac{28\!\cdots\!27}{60\!\cdots\!75}a^{16}-\frac{81\!\cdots\!34}{24\!\cdots\!23}a^{15}+\frac{69\!\cdots\!84}{60\!\cdots\!75}a^{14}+\frac{25\!\cdots\!51}{12\!\cdots\!15}a^{13}-\frac{17\!\cdots\!72}{60\!\cdots\!75}a^{12}+\frac{11\!\cdots\!26}{60\!\cdots\!75}a^{11}-\frac{80\!\cdots\!84}{60\!\cdots\!75}a^{10}+\frac{20\!\cdots\!94}{60\!\cdots\!75}a^{9}+\frac{28\!\cdots\!11}{60\!\cdots\!75}a^{8}-\frac{30\!\cdots\!73}{60\!\cdots\!75}a^{7}+\frac{25\!\cdots\!63}{60\!\cdots\!75}a^{6}-\frac{24\!\cdots\!86}{60\!\cdots\!75}a^{5}+\frac{25\!\cdots\!93}{60\!\cdots\!75}a^{4}+\frac{14\!\cdots\!86}{60\!\cdots\!75}a^{3}-\frac{99\!\cdots\!04}{60\!\cdots\!75}a^{2}-\frac{10\!\cdots\!79}{24\!\cdots\!23}a-\frac{52\!\cdots\!09}{24\!\cdots\!23}$, $\frac{1}{30\!\cdots\!75}a^{27}-\frac{1}{30\!\cdots\!75}a^{26}-\frac{12}{30\!\cdots\!75}a^{25}+\frac{20\!\cdots\!96}{30\!\cdots\!75}a^{24}+\frac{19\!\cdots\!63}{30\!\cdots\!75}a^{23}-\frac{15\!\cdots\!67}{30\!\cdots\!75}a^{22}+\frac{76\!\cdots\!31}{30\!\cdots\!75}a^{21}+\frac{27\!\cdots\!81}{30\!\cdots\!75}a^{20}-\frac{13\!\cdots\!09}{30\!\cdots\!75}a^{19}-\frac{98\!\cdots\!66}{30\!\cdots\!75}a^{18}-\frac{13\!\cdots\!12}{30\!\cdots\!75}a^{17}+\frac{98\!\cdots\!59}{60\!\cdots\!75}a^{16}-\frac{77\!\cdots\!71}{30\!\cdots\!75}a^{15}+\frac{56\!\cdots\!29}{60\!\cdots\!75}a^{14}-\frac{93\!\cdots\!52}{30\!\cdots\!75}a^{13}-\frac{14\!\cdots\!09}{30\!\cdots\!75}a^{12}+\frac{42\!\cdots\!26}{30\!\cdots\!75}a^{11}+\frac{27\!\cdots\!59}{30\!\cdots\!75}a^{10}-\frac{39\!\cdots\!34}{30\!\cdots\!75}a^{9}-\frac{20\!\cdots\!68}{30\!\cdots\!75}a^{8}-\frac{55\!\cdots\!32}{30\!\cdots\!75}a^{7}+\frac{12\!\cdots\!89}{30\!\cdots\!75}a^{6}-\frac{55\!\cdots\!37}{30\!\cdots\!75}a^{5}-\frac{32\!\cdots\!79}{30\!\cdots\!75}a^{4}+\frac{73\!\cdots\!51}{30\!\cdots\!75}a^{3}+\frac{29\!\cdots\!94}{60\!\cdots\!75}a^{2}-\frac{63\!\cdots\!91}{24\!\cdots\!23}a+\frac{11\!\cdots\!96}{24\!\cdots\!23}$, $\frac{1}{15\!\cdots\!75}a^{28}-\frac{1}{15\!\cdots\!75}a^{27}-\frac{12}{15\!\cdots\!75}a^{26}+\frac{21}{15\!\cdots\!75}a^{25}-\frac{10\!\cdots\!62}{15\!\cdots\!75}a^{24}+\frac{12\!\cdots\!58}{15\!\cdots\!75}a^{23}-\frac{21\!\cdots\!44}{15\!\cdots\!75}a^{22}+\frac{54\!\cdots\!06}{15\!\cdots\!75}a^{21}+\frac{56\!\cdots\!41}{15\!\cdots\!75}a^{20}+\frac{13\!\cdots\!09}{15\!\cdots\!75}a^{19}-\frac{47\!\cdots\!62}{15\!\cdots\!75}a^{18}-\frac{22\!\cdots\!51}{30\!\cdots\!75}a^{17}-\frac{71\!\cdots\!71}{15\!\cdots\!75}a^{16}+\frac{64\!\cdots\!74}{30\!\cdots\!75}a^{15}+\frac{26\!\cdots\!73}{15\!\cdots\!75}a^{14}+\frac{12\!\cdots\!91}{15\!\cdots\!75}a^{13}+\frac{18\!\cdots\!01}{15\!\cdots\!75}a^{12}-\frac{17\!\cdots\!41}{15\!\cdots\!75}a^{11}-\frac{51\!\cdots\!59}{15\!\cdots\!75}a^{10}+\frac{69\!\cdots\!07}{15\!\cdots\!75}a^{9}-\frac{30\!\cdots\!32}{15\!\cdots\!75}a^{8}+\frac{92\!\cdots\!64}{15\!\cdots\!75}a^{7}-\frac{31\!\cdots\!37}{15\!\cdots\!75}a^{6}+\frac{38\!\cdots\!46}{15\!\cdots\!75}a^{5}+\frac{52\!\cdots\!76}{15\!\cdots\!75}a^{4}+\frac{84\!\cdots\!74}{30\!\cdots\!75}a^{3}+\frac{16\!\cdots\!86}{24\!\cdots\!23}a^{2}+\frac{22\!\cdots\!42}{12\!\cdots\!15}a-\frac{98\!\cdots\!44}{24\!\cdots\!23}$, $\frac{1}{76\!\cdots\!75}a^{29}-\frac{1}{76\!\cdots\!75}a^{28}-\frac{12}{76\!\cdots\!75}a^{27}+\frac{21}{76\!\cdots\!75}a^{26}-\frac{187}{76\!\cdots\!75}a^{25}-\frac{47\!\cdots\!42}{76\!\cdots\!75}a^{24}-\frac{20\!\cdots\!94}{76\!\cdots\!75}a^{23}+\frac{18\!\cdots\!31}{76\!\cdots\!75}a^{22}-\frac{45\!\cdots\!59}{76\!\cdots\!75}a^{21}-\frac{16\!\cdots\!41}{76\!\cdots\!75}a^{20}-\frac{38\!\cdots\!87}{76\!\cdots\!75}a^{19}+\frac{67\!\cdots\!74}{15\!\cdots\!75}a^{18}+\frac{93\!\cdots\!79}{76\!\cdots\!75}a^{17}+\frac{54\!\cdots\!74}{15\!\cdots\!75}a^{16}+\frac{38\!\cdots\!98}{76\!\cdots\!75}a^{15}+\frac{28\!\cdots\!91}{76\!\cdots\!75}a^{14}-\frac{28\!\cdots\!49}{76\!\cdots\!75}a^{13}+\frac{13\!\cdots\!34}{76\!\cdots\!75}a^{12}-\frac{23\!\cdots\!84}{76\!\cdots\!75}a^{11}+\frac{22\!\cdots\!07}{76\!\cdots\!75}a^{10}+\frac{10\!\cdots\!43}{76\!\cdots\!75}a^{9}-\frac{29\!\cdots\!86}{76\!\cdots\!75}a^{8}-\frac{11\!\cdots\!62}{76\!\cdots\!75}a^{7}-\frac{77\!\cdots\!04}{76\!\cdots\!75}a^{6}-\frac{10\!\cdots\!24}{76\!\cdots\!75}a^{5}-\frac{42\!\cdots\!76}{15\!\cdots\!75}a^{4}-\frac{20\!\cdots\!72}{60\!\cdots\!75}a^{3}+\frac{42\!\cdots\!04}{12\!\cdots\!15}a^{2}-\frac{35\!\cdots\!84}{12\!\cdots\!15}a+\frac{47\!\cdots\!67}{24\!\cdots\!23}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{23771}$, which has order $23771$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $14$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -\frac{1761335410116761735487}{152437075483322922766451875} a^{29} + \frac{1845208524884226580034}{152437075483322922766451875} a^{28} - \frac{22561867872448043183143}{152437075483322922766451875} a^{27} + \frac{7716326558606765698324}{152437075483322922766451875} a^{26} - \frac{237946267856495355489839}{152437075483322922766451875} a^{25} - \frac{1090350491977042979111}{1219496603866583382131615} a^{24} - \frac{2543703824667673805421416}{152437075483322922766451875} a^{23} + \frac{2337040469880640428457608}{30487415096664584553290375} a^{22} - \frac{1824743484880965157964532}{6097483019332916910658075} a^{21} + \frac{130018592796458187649557554}{152437075483322922766451875} a^{20} - \frac{428827216041127164383502523}{152437075483322922766451875} a^{19} + \frac{1032077671990873306759753536}{152437075483322922766451875} a^{18} - \frac{3460436885202949788855281453}{152437075483322922766451875} a^{17} + \frac{6938259492873588295477332348}{152437075483322922766451875} a^{16} - \frac{13407940861820042370681712446}{152437075483322922766451875} a^{15} + \frac{24462167362416787069274717839}{152437075483322922766451875} a^{14} - \frac{8918563198571803407806786171}{30487415096664584553290375} a^{13} + \frac{66935991176780732734813658474}{152437075483322922766451875} a^{12} - \frac{109641215965431851117976862159}{152437075483322922766451875} a^{11} + \frac{18987920300897167637341901533}{152437075483322922766451875} a^{10} - \frac{6581627402338392775475172827}{152437075483322922766451875} a^{9} + \frac{5385499744560558135409811948}{152437075483322922766451875} a^{8} - \frac{1961550515967357647737190093}{152437075483322922766451875} a^{7} + \frac{1070989809275924766649682349}{152437075483322922766451875} a^{6} + \frac{25584906548011778575150521}{30487415096664584553290375} a^{5} - \frac{2869491987737332359296048558}{152437075483322922766451875} a^{4} + \frac{47220563614082707479961}{1219496603866583382131615} a^{3} + \frac{105009139688865985372844}{243899320773316676426323} a^{2} - \frac{7129214755234511786495}{243899320773316676426323} a + \frac{25161934430239453364100}{243899320773316676426323} \)  (order $14$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{29\!\cdots\!67}{15\!\cdots\!75}a^{29}-\frac{75\!\cdots\!74}{15\!\cdots\!75}a^{28}+\frac{36\!\cdots\!53}{15\!\cdots\!75}a^{27}+\frac{17\!\cdots\!41}{15\!\cdots\!75}a^{26}+\frac{40\!\cdots\!74}{15\!\cdots\!75}a^{25}+\frac{11\!\cdots\!39}{30\!\cdots\!75}a^{24}+\frac{46\!\cdots\!46}{15\!\cdots\!75}a^{23}-\frac{32\!\cdots\!23}{30\!\cdots\!75}a^{22}+\frac{12\!\cdots\!11}{30\!\cdots\!75}a^{21}-\frac{16\!\cdots\!09}{15\!\cdots\!75}a^{20}+\frac{57\!\cdots\!08}{15\!\cdots\!75}a^{19}-\frac{12\!\cdots\!26}{15\!\cdots\!75}a^{18}+\frac{46\!\cdots\!28}{15\!\cdots\!75}a^{17}-\frac{74\!\cdots\!63}{15\!\cdots\!75}a^{16}+\frac{14\!\cdots\!51}{15\!\cdots\!75}a^{15}-\frac{25\!\cdots\!89}{15\!\cdots\!75}a^{14}+\frac{93\!\cdots\!86}{30\!\cdots\!75}a^{13}-\frac{61\!\cdots\!54}{15\!\cdots\!75}a^{12}+\frac{10\!\cdots\!09}{15\!\cdots\!75}a^{11}+\frac{97\!\cdots\!57}{15\!\cdots\!75}a^{10}+\frac{17\!\cdots\!82}{15\!\cdots\!75}a^{9}+\frac{23\!\cdots\!12}{15\!\cdots\!75}a^{8}+\frac{18\!\cdots\!23}{15\!\cdots\!75}a^{7}-\frac{92\!\cdots\!34}{15\!\cdots\!75}a^{6}-\frac{16\!\cdots\!61}{30\!\cdots\!75}a^{5}+\frac{29\!\cdots\!33}{15\!\cdots\!75}a^{4}+\frac{22\!\cdots\!57}{30\!\cdots\!75}a^{3}+\frac{25\!\cdots\!03}{60\!\cdots\!75}a^{2}+\frac{17\!\cdots\!87}{12\!\cdots\!15}a-\frac{22\!\cdots\!00}{24\!\cdots\!23}$, $\frac{17\!\cdots\!62}{15\!\cdots\!75}a^{29}-\frac{17\!\cdots\!09}{15\!\cdots\!75}a^{28}+\frac{22\!\cdots\!43}{15\!\cdots\!75}a^{27}-\frac{62\!\cdots\!74}{15\!\cdots\!75}a^{26}+\frac{23\!\cdots\!14}{15\!\cdots\!75}a^{25}+\frac{60\!\cdots\!92}{60\!\cdots\!75}a^{24}+\frac{25\!\cdots\!91}{15\!\cdots\!75}a^{23}-\frac{22\!\cdots\!23}{30\!\cdots\!75}a^{22}+\frac{71\!\cdots\!07}{24\!\cdots\!23}a^{21}-\frac{12\!\cdots\!29}{15\!\cdots\!75}a^{20}+\frac{42\!\cdots\!98}{15\!\cdots\!75}a^{19}-\frac{10\!\cdots\!61}{15\!\cdots\!75}a^{18}+\frac{34\!\cdots\!03}{15\!\cdots\!75}a^{17}-\frac{67\!\cdots\!48}{15\!\cdots\!75}a^{16}+\frac{13\!\cdots\!46}{15\!\cdots\!75}a^{15}-\frac{24\!\cdots\!39}{15\!\cdots\!75}a^{14}+\frac{88\!\cdots\!61}{30\!\cdots\!75}a^{13}-\frac{66\!\cdots\!49}{15\!\cdots\!75}a^{12}+\frac{10\!\cdots\!59}{15\!\cdots\!75}a^{11}-\frac{18\!\cdots\!83}{15\!\cdots\!75}a^{10}+\frac{17\!\cdots\!27}{15\!\cdots\!75}a^{9}-\frac{53\!\cdots\!73}{15\!\cdots\!75}a^{8}+\frac{19\!\cdots\!43}{15\!\cdots\!75}a^{7}-\frac{10\!\cdots\!99}{15\!\cdots\!75}a^{6}-\frac{25\!\cdots\!96}{30\!\cdots\!75}a^{5}+\frac{28\!\cdots\!58}{15\!\cdots\!75}a^{4}-\frac{46\!\cdots\!36}{12\!\cdots\!15}a^{3}+\frac{24\!\cdots\!28}{60\!\cdots\!75}a^{2}+\frac{70\!\cdots\!70}{24\!\cdots\!23}a-\frac{24\!\cdots\!75}{24\!\cdots\!23}$, $\frac{58\!\cdots\!58}{12\!\cdots\!15}a^{29}-\frac{52\!\cdots\!07}{12\!\cdots\!15}a^{22}-\frac{45\!\cdots\!74}{12\!\cdots\!15}a^{15}-\frac{63\!\cdots\!53}{12\!\cdots\!15}a^{8}+\frac{49\!\cdots\!11}{12\!\cdots\!15}a$, $\frac{74\!\cdots\!64}{30\!\cdots\!75}a^{29}+\frac{55\!\cdots\!73}{30\!\cdots\!75}a^{28}+\frac{83\!\cdots\!98}{30\!\cdots\!75}a^{27}+\frac{13\!\cdots\!37}{30\!\cdots\!75}a^{26}+\frac{97\!\cdots\!08}{30\!\cdots\!75}a^{25}+\frac{23\!\cdots\!26}{30\!\cdots\!75}a^{24}+\frac{12\!\cdots\!09}{30\!\cdots\!75}a^{23}-\frac{11\!\cdots\!16}{12\!\cdots\!15}a^{22}+\frac{10\!\cdots\!84}{30\!\cdots\!75}a^{21}-\frac{21\!\cdots\!24}{30\!\cdots\!75}a^{20}+\frac{87\!\cdots\!78}{30\!\cdots\!75}a^{19}-\frac{12\!\cdots\!47}{30\!\cdots\!75}a^{18}+\frac{14\!\cdots\!24}{60\!\cdots\!75}a^{17}-\frac{40\!\cdots\!17}{30\!\cdots\!75}a^{16}+\frac{74\!\cdots\!24}{30\!\cdots\!75}a^{15}-\frac{16\!\cdots\!66}{60\!\cdots\!75}a^{14}+\frac{65\!\cdots\!19}{12\!\cdots\!15}a^{13}+\frac{30\!\cdots\!81}{30\!\cdots\!75}a^{12}+\frac{79\!\cdots\!42}{24\!\cdots\!23}a^{11}+\frac{68\!\cdots\!07}{30\!\cdots\!75}a^{10}-\frac{59\!\cdots\!31}{30\!\cdots\!75}a^{9}+\frac{21\!\cdots\!73}{30\!\cdots\!75}a^{8}-\frac{46\!\cdots\!16}{30\!\cdots\!75}a^{7}+\frac{77\!\cdots\!87}{30\!\cdots\!75}a^{6}+\frac{51\!\cdots\!73}{60\!\cdots\!75}a^{5}+\frac{68\!\cdots\!17}{12\!\cdots\!15}a^{4}+\frac{18\!\cdots\!33}{30\!\cdots\!75}a^{3}+\frac{31\!\cdots\!85}{24\!\cdots\!23}a^{2}+\frac{62\!\cdots\!00}{24\!\cdots\!23}a+\frac{77\!\cdots\!25}{24\!\cdots\!23}$, $\frac{21\!\cdots\!18}{15\!\cdots\!75}a^{29}-\frac{26\!\cdots\!18}{15\!\cdots\!75}a^{28}+\frac{27\!\cdots\!59}{15\!\cdots\!75}a^{27}-\frac{14\!\cdots\!47}{15\!\cdots\!75}a^{26}+\frac{28\!\cdots\!09}{15\!\cdots\!75}a^{25}+\frac{10\!\cdots\!44}{15\!\cdots\!75}a^{24}+\frac{30\!\cdots\!08}{15\!\cdots\!75}a^{23}-\frac{14\!\cdots\!42}{15\!\cdots\!75}a^{22}+\frac{57\!\cdots\!13}{15\!\cdots\!75}a^{21}-\frac{16\!\cdots\!38}{15\!\cdots\!75}a^{20}+\frac{54\!\cdots\!34}{15\!\cdots\!75}a^{19}-\frac{27\!\cdots\!23}{30\!\cdots\!75}a^{18}+\frac{44\!\cdots\!47}{15\!\cdots\!75}a^{17}-\frac{18\!\cdots\!83}{30\!\cdots\!75}a^{16}+\frac{17\!\cdots\!89}{15\!\cdots\!75}a^{15}-\frac{32\!\cdots\!12}{15\!\cdots\!75}a^{14}+\frac{59\!\cdots\!43}{15\!\cdots\!75}a^{13}-\frac{91\!\cdots\!38}{15\!\cdots\!75}a^{12}+\frac{14\!\cdots\!63}{15\!\cdots\!75}a^{11}-\frac{50\!\cdots\!24}{15\!\cdots\!75}a^{10}+\frac{13\!\cdots\!49}{15\!\cdots\!75}a^{9}-\frac{22\!\cdots\!73}{15\!\cdots\!75}a^{8}+\frac{46\!\cdots\!34}{15\!\cdots\!75}a^{7}-\frac{34\!\cdots\!72}{15\!\cdots\!75}a^{6}+\frac{24\!\cdots\!18}{15\!\cdots\!75}a^{5}+\frac{65\!\cdots\!72}{30\!\cdots\!75}a^{4}-\frac{74\!\cdots\!08}{12\!\cdots\!15}a^{3}-\frac{31\!\cdots\!07}{24\!\cdots\!23}a^{2}+\frac{11\!\cdots\!76}{12\!\cdots\!15}a-\frac{75\!\cdots\!75}{24\!\cdots\!23}$, $\frac{29\!\cdots\!53}{24\!\cdots\!23}a^{29}-\frac{26\!\cdots\!24}{12\!\cdots\!15}a^{28}+\frac{82\!\cdots\!92}{12\!\cdots\!15}a^{27}-\frac{28\!\cdots\!74}{12\!\cdots\!15}a^{26}-\frac{17\!\cdots\!09}{12\!\cdots\!15}a^{25}-\frac{30\!\cdots\!63}{12\!\cdots\!15}a^{24}-\frac{48\!\cdots\!76}{12\!\cdots\!15}a^{23}-\frac{48\!\cdots\!36}{12\!\cdots\!15}a^{22}+\frac{14\!\cdots\!28}{12\!\cdots\!15}a^{21}-\frac{51\!\cdots\!99}{12\!\cdots\!15}a^{20}+\frac{24\!\cdots\!63}{24\!\cdots\!23}a^{19}-\frac{41\!\cdots\!17}{12\!\cdots\!15}a^{18}+\frac{16\!\cdots\!98}{24\!\cdots\!23}a^{17}-\frac{64\!\cdots\!26}{24\!\cdots\!23}a^{16}+\frac{34\!\cdots\!06}{12\!\cdots\!15}a^{15}-\frac{59\!\cdots\!98}{12\!\cdots\!15}a^{14}+\frac{83\!\cdots\!18}{12\!\cdots\!15}a^{13}-\frac{13\!\cdots\!43}{12\!\cdots\!15}a^{12}+\frac{35\!\cdots\!64}{12\!\cdots\!15}a^{11}-\frac{38\!\cdots\!14}{12\!\cdots\!15}a^{10}-\frac{22\!\cdots\!84}{12\!\cdots\!15}a^{9}+\frac{62\!\cdots\!04}{12\!\cdots\!15}a^{8}-\frac{57\!\cdots\!33}{12\!\cdots\!15}a^{7}-\frac{22\!\cdots\!98}{12\!\cdots\!15}a^{6}-\frac{62\!\cdots\!67}{24\!\cdots\!23}a^{5}-\frac{11\!\cdots\!40}{24\!\cdots\!23}a^{4}-\frac{46\!\cdots\!75}{24\!\cdots\!23}a^{3}-\frac{17\!\cdots\!87}{12\!\cdots\!15}a^{2}-\frac{12\!\cdots\!51}{12\!\cdots\!15}a-\frac{64\!\cdots\!85}{24\!\cdots\!23}$, $\frac{48\!\cdots\!21}{76\!\cdots\!75}a^{29}+\frac{19\!\cdots\!84}{76\!\cdots\!75}a^{28}+\frac{39\!\cdots\!68}{76\!\cdots\!75}a^{27}+\frac{29\!\cdots\!81}{76\!\cdots\!75}a^{26}+\frac{57\!\cdots\!78}{76\!\cdots\!75}a^{25}+\frac{37\!\cdots\!33}{76\!\cdots\!75}a^{24}+\frac{92\!\cdots\!16}{76\!\cdots\!75}a^{23}+\frac{42\!\cdots\!81}{76\!\cdots\!75}a^{22}-\frac{33\!\cdots\!59}{76\!\cdots\!75}a^{21}+\frac{27\!\cdots\!44}{76\!\cdots\!75}a^{20}-\frac{60\!\cdots\!07}{76\!\cdots\!75}a^{19}+\frac{62\!\cdots\!72}{15\!\cdots\!75}a^{18}-\frac{47\!\cdots\!66}{76\!\cdots\!75}a^{17}+\frac{58\!\cdots\!13}{15\!\cdots\!75}a^{16}-\frac{58\!\cdots\!67}{76\!\cdots\!75}a^{15}+\frac{12\!\cdots\!51}{76\!\cdots\!75}a^{14}-\frac{22\!\cdots\!24}{76\!\cdots\!75}a^{13}+\frac{45\!\cdots\!44}{76\!\cdots\!75}a^{12}-\frac{65\!\cdots\!69}{76\!\cdots\!75}a^{11}+\frac{15\!\cdots\!77}{76\!\cdots\!75}a^{10}-\frac{32\!\cdots\!62}{76\!\cdots\!75}a^{9}+\frac{42\!\cdots\!84}{76\!\cdots\!75}a^{8}-\frac{12\!\cdots\!07}{76\!\cdots\!75}a^{7}+\frac{12\!\cdots\!81}{76\!\cdots\!75}a^{6}-\frac{41\!\cdots\!49}{76\!\cdots\!75}a^{5}+\frac{11\!\cdots\!71}{30\!\cdots\!75}a^{4}+\frac{39\!\cdots\!09}{60\!\cdots\!75}a^{3}+\frac{10\!\cdots\!61}{12\!\cdots\!15}a^{2}+\frac{19\!\cdots\!19}{24\!\cdots\!23}a+\frac{51\!\cdots\!05}{24\!\cdots\!23}$, $\frac{17\!\cdots\!91}{12\!\cdots\!15}a^{29}-\frac{15\!\cdots\!29}{12\!\cdots\!15}a^{22}-\frac{13\!\cdots\!98}{12\!\cdots\!15}a^{15}-\frac{18\!\cdots\!81}{12\!\cdots\!15}a^{8}+\frac{21\!\cdots\!02}{12\!\cdots\!15}a$, $\frac{80\!\cdots\!08}{76\!\cdots\!75}a^{29}-\frac{11\!\cdots\!93}{76\!\cdots\!75}a^{28}+\frac{11\!\cdots\!14}{76\!\cdots\!75}a^{27}-\frac{78\!\cdots\!62}{76\!\cdots\!75}a^{26}+\frac{11\!\cdots\!94}{76\!\cdots\!75}a^{25}+\frac{20\!\cdots\!34}{76\!\cdots\!75}a^{24}+\frac{12\!\cdots\!93}{76\!\cdots\!75}a^{23}-\frac{57\!\cdots\!37}{76\!\cdots\!75}a^{22}+\frac{23\!\cdots\!68}{76\!\cdots\!75}a^{21}-\frac{71\!\cdots\!38}{76\!\cdots\!75}a^{20}+\frac{23\!\cdots\!64}{76\!\cdots\!75}a^{19}-\frac{11\!\cdots\!79}{15\!\cdots\!75}a^{18}+\frac{19\!\cdots\!57}{76\!\cdots\!75}a^{17}-\frac{82\!\cdots\!11}{15\!\cdots\!75}a^{16}+\frac{84\!\cdots\!34}{76\!\cdots\!75}a^{15}-\frac{15\!\cdots\!27}{76\!\cdots\!75}a^{14}+\frac{29\!\cdots\!73}{76\!\cdots\!75}a^{13}-\frac{46\!\cdots\!38}{76\!\cdots\!75}a^{12}+\frac{77\!\cdots\!88}{76\!\cdots\!75}a^{11}-\frac{50\!\cdots\!29}{76\!\cdots\!75}a^{10}+\frac{45\!\cdots\!24}{76\!\cdots\!75}a^{9}-\frac{17\!\cdots\!18}{76\!\cdots\!75}a^{8}+\frac{13\!\cdots\!14}{76\!\cdots\!75}a^{7}-\frac{13\!\cdots\!37}{76\!\cdots\!75}a^{6}-\frac{58\!\cdots\!27}{76\!\cdots\!75}a^{5}-\frac{12\!\cdots\!67}{30\!\cdots\!75}a^{4}+\frac{22\!\cdots\!03}{30\!\cdots\!75}a^{3}-\frac{18\!\cdots\!88}{60\!\cdots\!75}a^{2}+\frac{23\!\cdots\!23}{12\!\cdots\!15}a-\frac{64\!\cdots\!58}{24\!\cdots\!23}$, $\frac{14\!\cdots\!33}{15\!\cdots\!75}a^{29}-\frac{12\!\cdots\!06}{15\!\cdots\!75}a^{28}+\frac{18\!\cdots\!12}{15\!\cdots\!75}a^{27}-\frac{35\!\cdots\!66}{15\!\cdots\!75}a^{26}+\frac{19\!\cdots\!51}{15\!\cdots\!75}a^{25}+\frac{57\!\cdots\!27}{60\!\cdots\!75}a^{24}+\frac{21\!\cdots\!19}{15\!\cdots\!75}a^{23}-\frac{18\!\cdots\!37}{30\!\cdots\!75}a^{22}+\frac{14\!\cdots\!31}{60\!\cdots\!75}a^{21}-\frac{10\!\cdots\!61}{15\!\cdots\!75}a^{20}+\frac{34\!\cdots\!57}{15\!\cdots\!75}a^{19}-\frac{81\!\cdots\!24}{15\!\cdots\!75}a^{18}+\frac{27\!\cdots\!02}{15\!\cdots\!75}a^{17}-\frac{54\!\cdots\!07}{15\!\cdots\!75}a^{16}+\frac{10\!\cdots\!64}{15\!\cdots\!75}a^{15}-\frac{19\!\cdots\!26}{15\!\cdots\!75}a^{14}+\frac{72\!\cdots\!54}{30\!\cdots\!75}a^{13}-\frac{54\!\cdots\!41}{15\!\cdots\!75}a^{12}+\frac{90\!\cdots\!06}{15\!\cdots\!75}a^{11}-\frac{15\!\cdots\!22}{15\!\cdots\!75}a^{10}+\frac{27\!\cdots\!93}{15\!\cdots\!75}a^{9}-\frac{43\!\cdots\!07}{15\!\cdots\!75}a^{8}+\frac{57\!\cdots\!62}{15\!\cdots\!75}a^{7}-\frac{86\!\cdots\!66}{15\!\cdots\!75}a^{6}-\frac{20\!\cdots\!89}{30\!\cdots\!75}a^{5}+\frac{77\!\cdots\!97}{15\!\cdots\!75}a^{4}-\frac{37\!\cdots\!49}{12\!\cdots\!15}a^{3}+\frac{12\!\cdots\!68}{60\!\cdots\!75}a^{2}+\frac{58\!\cdots\!05}{24\!\cdots\!23}a+\frac{42\!\cdots\!82}{24\!\cdots\!23}$, $\frac{97\!\cdots\!44}{15\!\cdots\!75}a^{29}-\frac{60\!\cdots\!33}{15\!\cdots\!75}a^{28}+\frac{12\!\cdots\!66}{15\!\cdots\!75}a^{27}+\frac{96\!\cdots\!37}{15\!\cdots\!75}a^{26}+\frac{13\!\cdots\!18}{15\!\cdots\!75}a^{25}+\frac{52\!\cdots\!82}{60\!\cdots\!75}a^{24}+\frac{14\!\cdots\!42}{15\!\cdots\!75}a^{23}-\frac{11\!\cdots\!11}{30\!\cdots\!75}a^{22}+\frac{91\!\cdots\!27}{60\!\cdots\!75}a^{21}-\frac{62\!\cdots\!73}{15\!\cdots\!75}a^{20}+\frac{21\!\cdots\!51}{15\!\cdots\!75}a^{19}-\frac{48\!\cdots\!57}{15\!\cdots\!75}a^{18}+\frac{17\!\cdots\!11}{15\!\cdots\!75}a^{17}-\frac{31\!\cdots\!26}{15\!\cdots\!75}a^{16}+\frac{61\!\cdots\!02}{15\!\cdots\!75}a^{15}-\frac{10\!\cdots\!18}{15\!\cdots\!75}a^{14}+\frac{40\!\cdots\!67}{30\!\cdots\!75}a^{13}-\frac{28\!\cdots\!38}{15\!\cdots\!75}a^{12}+\frac{48\!\cdots\!83}{15\!\cdots\!75}a^{11}+\frac{10\!\cdots\!29}{15\!\cdots\!75}a^{10}+\frac{78\!\cdots\!74}{15\!\cdots\!75}a^{9}+\frac{18\!\cdots\!24}{15\!\cdots\!75}a^{8}+\frac{28\!\cdots\!41}{15\!\cdots\!75}a^{7}-\frac{44\!\cdots\!13}{15\!\cdots\!75}a^{6}-\frac{98\!\cdots\!02}{30\!\cdots\!75}a^{5}+\frac{49\!\cdots\!71}{15\!\cdots\!75}a^{4}+\frac{21\!\cdots\!39}{12\!\cdots\!15}a^{3}+\frac{24\!\cdots\!48}{60\!\cdots\!75}a^{2}+\frac{91\!\cdots\!95}{24\!\cdots\!23}a+\frac{29\!\cdots\!01}{24\!\cdots\!23}$, $\frac{51\!\cdots\!03}{76\!\cdots\!75}a^{29}-\frac{40\!\cdots\!53}{76\!\cdots\!75}a^{28}+\frac{64\!\cdots\!89}{76\!\cdots\!75}a^{27}-\frac{56\!\cdots\!87}{76\!\cdots\!75}a^{26}+\frac{68\!\cdots\!39}{76\!\cdots\!75}a^{25}+\frac{57\!\cdots\!49}{76\!\cdots\!75}a^{24}+\frac{74\!\cdots\!93}{76\!\cdots\!75}a^{23}-\frac{32\!\cdots\!07}{76\!\cdots\!75}a^{22}+\frac{12\!\cdots\!23}{76\!\cdots\!75}a^{21}-\frac{34\!\cdots\!48}{76\!\cdots\!75}a^{20}+\frac{11\!\cdots\!64}{76\!\cdots\!75}a^{19}-\frac{53\!\cdots\!33}{15\!\cdots\!75}a^{18}+\frac{92\!\cdots\!87}{76\!\cdots\!75}a^{17}-\frac{35\!\cdots\!18}{15\!\cdots\!75}a^{16}+\frac{33\!\cdots\!69}{76\!\cdots\!75}a^{15}-\frac{61\!\cdots\!02}{76\!\cdots\!75}a^{14}+\frac{11\!\cdots\!53}{76\!\cdots\!75}a^{13}-\frac{16\!\cdots\!48}{76\!\cdots\!75}a^{12}+\frac{27\!\cdots\!23}{76\!\cdots\!75}a^{11}+\frac{20\!\cdots\!71}{76\!\cdots\!75}a^{10}+\frac{15\!\cdots\!04}{76\!\cdots\!75}a^{9}-\frac{45\!\cdots\!58}{76\!\cdots\!75}a^{8}+\frac{44\!\cdots\!64}{76\!\cdots\!75}a^{7}+\frac{27\!\cdots\!63}{76\!\cdots\!75}a^{6}+\frac{44\!\cdots\!28}{76\!\cdots\!75}a^{5}+\frac{12\!\cdots\!12}{15\!\cdots\!75}a^{4}+\frac{17\!\cdots\!57}{60\!\cdots\!75}a^{3}-\frac{12\!\cdots\!94}{60\!\cdots\!75}a^{2}+\frac{11\!\cdots\!08}{12\!\cdots\!15}a-\frac{12\!\cdots\!54}{24\!\cdots\!23}$, $\frac{95\!\cdots\!38}{60\!\cdots\!75}a^{29}-\frac{81\!\cdots\!49}{60\!\cdots\!75}a^{28}+\frac{25\!\cdots\!12}{60\!\cdots\!75}a^{27}-\frac{88\!\cdots\!64}{60\!\cdots\!75}a^{26}-\frac{52\!\cdots\!74}{60\!\cdots\!75}a^{25}-\frac{94\!\cdots\!18}{60\!\cdots\!75}a^{24}-\frac{15\!\cdots\!01}{60\!\cdots\!75}a^{23}-\frac{19\!\cdots\!48}{60\!\cdots\!75}a^{22}+\frac{45\!\cdots\!28}{60\!\cdots\!75}a^{21}-\frac{15\!\cdots\!14}{60\!\cdots\!75}a^{20}+\frac{75\!\cdots\!18}{12\!\cdots\!15}a^{19}-\frac{12\!\cdots\!62}{60\!\cdots\!75}a^{18}+\frac{50\!\cdots\!28}{12\!\cdots\!15}a^{17}-\frac{19\!\cdots\!87}{12\!\cdots\!15}a^{16}+\frac{67\!\cdots\!02}{60\!\cdots\!75}a^{15}-\frac{18\!\cdots\!18}{60\!\cdots\!75}a^{14}+\frac{25\!\cdots\!48}{60\!\cdots\!75}a^{13}-\frac{42\!\cdots\!98}{60\!\cdots\!75}a^{12}+\frac{10\!\cdots\!04}{60\!\cdots\!75}a^{11}-\frac{11\!\cdots\!04}{60\!\cdots\!75}a^{10}-\frac{69\!\cdots\!69}{60\!\cdots\!75}a^{9}-\frac{35\!\cdots\!89}{60\!\cdots\!75}a^{8}-\frac{16\!\cdots\!68}{60\!\cdots\!75}a^{7}-\frac{70\!\cdots\!28}{60\!\cdots\!75}a^{6}-\frac{19\!\cdots\!62}{12\!\cdots\!15}a^{5}-\frac{67\!\cdots\!48}{24\!\cdots\!23}a^{4}-\frac{28\!\cdots\!10}{24\!\cdots\!23}a^{3}-\frac{80\!\cdots\!77}{60\!\cdots\!75}a^{2}-\frac{13\!\cdots\!97}{12\!\cdots\!15}a-\frac{63\!\cdots\!57}{24\!\cdots\!23}$, $\frac{59\!\cdots\!08}{15\!\cdots\!75}a^{29}-\frac{11\!\cdots\!51}{15\!\cdots\!75}a^{28}+\frac{71\!\cdots\!22}{15\!\cdots\!75}a^{27}+\frac{38\!\cdots\!59}{15\!\cdots\!75}a^{26}+\frac{79\!\cdots\!26}{15\!\cdots\!75}a^{25}+\frac{22\!\cdots\!46}{30\!\cdots\!75}a^{24}+\frac{90\!\cdots\!79}{15\!\cdots\!75}a^{23}-\frac{64\!\cdots\!92}{30\!\cdots\!75}a^{22}+\frac{24\!\cdots\!29}{30\!\cdots\!75}a^{21}-\frac{31\!\cdots\!16}{15\!\cdots\!75}a^{20}+\frac{10\!\cdots\!42}{15\!\cdots\!75}a^{19}-\frac{22\!\cdots\!99}{15\!\cdots\!75}a^{18}+\frac{88\!\cdots\!97}{15\!\cdots\!75}a^{17}-\frac{13\!\cdots\!87}{15\!\cdots\!75}a^{16}+\frac{26\!\cdots\!24}{15\!\cdots\!75}a^{15}-\frac{46\!\cdots\!36}{15\!\cdots\!75}a^{14}+\frac{17\!\cdots\!29}{30\!\cdots\!75}a^{13}-\frac{10\!\cdots\!21}{15\!\cdots\!75}a^{12}+\frac{19\!\cdots\!16}{15\!\cdots\!75}a^{11}+\frac{22\!\cdots\!93}{15\!\cdots\!75}a^{10}+\frac{11\!\cdots\!43}{15\!\cdots\!75}a^{9}-\frac{87\!\cdots\!37}{15\!\cdots\!75}a^{8}+\frac{30\!\cdots\!02}{15\!\cdots\!75}a^{7}-\frac{16\!\cdots\!91}{15\!\cdots\!75}a^{6}-\frac{25\!\cdots\!89}{30\!\cdots\!75}a^{5}+\frac{62\!\cdots\!92}{15\!\cdots\!75}a^{4}+\frac{46\!\cdots\!43}{30\!\cdots\!75}a^{3}-\frac{16\!\cdots\!21}{24\!\cdots\!23}a^{2}+\frac{17\!\cdots\!80}{24\!\cdots\!23}a-\frac{59\!\cdots\!10}{24\!\cdots\!23}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 1790415251466.914 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{15}\cdot 1790415251466.914 \cdot 23771}{14\cdot\sqrt{832015950863087654302330210882647132596170473948590696647}}\cr\approx \mathstrut & 0.0989704133814656 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^30 - x^29 + 13*x^28 - 4*x^27 + 138*x^26 + 83*x^25 + 1481*x^24 - 6544*x^23 + 25941*x^22 - 74141*x^21 + 246113*x^20 - 591905*x^19 + 1995079*x^18 - 3985130*x^17 + 7897623*x^16 - 14461184*x^15 + 26509376*x^14 - 40183766*x^13 + 66639441*x^12 - 17174668*x^11 + 18785418*x^10 - 6252286*x^9 + 5288663*x^8 - 1844854*x^7 + 1098726*x^6 + 150145*x^5 + 265400*x^4 + 11125*x^3 + 66250*x^2 - 3125*x + 15625)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^30 - x^29 + 13*x^28 - 4*x^27 + 138*x^26 + 83*x^25 + 1481*x^24 - 6544*x^23 + 25941*x^22 - 74141*x^21 + 246113*x^20 - 591905*x^19 + 1995079*x^18 - 3985130*x^17 + 7897623*x^16 - 14461184*x^15 + 26509376*x^14 - 40183766*x^13 + 66639441*x^12 - 17174668*x^11 + 18785418*x^10 - 6252286*x^9 + 5288663*x^8 - 1844854*x^7 + 1098726*x^6 + 150145*x^5 + 265400*x^4 + 11125*x^3 + 66250*x^2 - 3125*x + 15625, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^30 - x^29 + 13*x^28 - 4*x^27 + 138*x^26 + 83*x^25 + 1481*x^24 - 6544*x^23 + 25941*x^22 - 74141*x^21 + 246113*x^20 - 591905*x^19 + 1995079*x^18 - 3985130*x^17 + 7897623*x^16 - 14461184*x^15 + 26509376*x^14 - 40183766*x^13 + 66639441*x^12 - 17174668*x^11 + 18785418*x^10 - 6252286*x^9 + 5288663*x^8 - 1844854*x^7 + 1098726*x^6 + 150145*x^5 + 265400*x^4 + 11125*x^3 + 66250*x^2 - 3125*x + 15625);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^30 - x^29 + 13*x^28 - 4*x^27 + 138*x^26 + 83*x^25 + 1481*x^24 - 6544*x^23 + 25941*x^22 - 74141*x^21 + 246113*x^20 - 591905*x^19 + 1995079*x^18 - 3985130*x^17 + 7897623*x^16 - 14461184*x^15 + 26509376*x^14 - 40183766*x^13 + 66639441*x^12 - 17174668*x^11 + 18785418*x^10 - 6252286*x^9 + 5288663*x^8 - 1844854*x^7 + 1098726*x^6 + 150145*x^5 + 265400*x^4 + 11125*x^3 + 66250*x^2 - 3125*x + 15625);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{30}$ (as 30T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 30
The 30 conjugacy class representatives for $C_{30}$
Character table for $C_{30}$

Intermediate fields

\(\Q(\sqrt{-7}) \), \(\Q(\zeta_{7})^+\), 5.5.923521.1, \(\Q(\zeta_{7})\), 10.0.14334539666270887.1, 15.15.222495240978703757087365489.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $15^{2}$ $30$ ${\href{/padicField/5.6.0.1}{6} }^{5}$ R $15^{2}$ ${\href{/padicField/13.10.0.1}{10} }^{3}$ $30$ $30$ $15^{2}$ ${\href{/padicField/29.5.0.1}{5} }^{6}$ R ${\href{/padicField/37.3.0.1}{3} }^{10}$ ${\href{/padicField/41.10.0.1}{10} }^{3}$ ${\href{/padicField/43.5.0.1}{5} }^{6}$ $30$ $15^{2}$ $30$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(7\) Copy content Toggle raw display Deg $30$$6$$5$$25$
\(31\) Copy content Toggle raw display Deg $30$$5$$6$$24$