Properties

Label 30.0.675...203.1
Degree $30$
Signature $[0, 15]$
Discriminant $-6.754\times 10^{49}$
Root discriminant \(45.81\)
Ramified primes $3,1117$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $D_{30}$ (as 30T14)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^30 - x^29 + 12*x^28 - 45*x^27 + 210*x^26 - 744*x^25 + 2465*x^24 - 6965*x^23 + 19758*x^22 - 48686*x^21 + 121619*x^20 - 306546*x^19 + 810012*x^18 - 2087415*x^17 + 5002572*x^16 - 11311375*x^15 + 24424402*x^14 - 49257771*x^13 + 88022499*x^12 - 134078913*x^11 + 172501038*x^10 - 188691174*x^9 + 176841252*x^8 - 141293241*x^7 + 95362353*x^6 - 55362204*x^5 + 28414476*x^4 - 12173571*x^3 + 3774762*x^2 - 708588*x + 59049)
 
gp: K = bnfinit(y^30 - y^29 + 12*y^28 - 45*y^27 + 210*y^26 - 744*y^25 + 2465*y^24 - 6965*y^23 + 19758*y^22 - 48686*y^21 + 121619*y^20 - 306546*y^19 + 810012*y^18 - 2087415*y^17 + 5002572*y^16 - 11311375*y^15 + 24424402*y^14 - 49257771*y^13 + 88022499*y^12 - 134078913*y^11 + 172501038*y^10 - 188691174*y^9 + 176841252*y^8 - 141293241*y^7 + 95362353*y^6 - 55362204*y^5 + 28414476*y^4 - 12173571*y^3 + 3774762*y^2 - 708588*y + 59049, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^30 - x^29 + 12*x^28 - 45*x^27 + 210*x^26 - 744*x^25 + 2465*x^24 - 6965*x^23 + 19758*x^22 - 48686*x^21 + 121619*x^20 - 306546*x^19 + 810012*x^18 - 2087415*x^17 + 5002572*x^16 - 11311375*x^15 + 24424402*x^14 - 49257771*x^13 + 88022499*x^12 - 134078913*x^11 + 172501038*x^10 - 188691174*x^9 + 176841252*x^8 - 141293241*x^7 + 95362353*x^6 - 55362204*x^5 + 28414476*x^4 - 12173571*x^3 + 3774762*x^2 - 708588*x + 59049);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^30 - x^29 + 12*x^28 - 45*x^27 + 210*x^26 - 744*x^25 + 2465*x^24 - 6965*x^23 + 19758*x^22 - 48686*x^21 + 121619*x^20 - 306546*x^19 + 810012*x^18 - 2087415*x^17 + 5002572*x^16 - 11311375*x^15 + 24424402*x^14 - 49257771*x^13 + 88022499*x^12 - 134078913*x^11 + 172501038*x^10 - 188691174*x^9 + 176841252*x^8 - 141293241*x^7 + 95362353*x^6 - 55362204*x^5 + 28414476*x^4 - 12173571*x^3 + 3774762*x^2 - 708588*x + 59049)
 

\( x^{30} - x^{29} + 12 x^{28} - 45 x^{27} + 210 x^{26} - 744 x^{25} + 2465 x^{24} - 6965 x^{23} + \cdots + 59049 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $30$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 15]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-67540340288911750220987142641365428116063232133203\) \(\medspace = -\,3^{15}\cdot 1117^{14}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(45.81\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $3^{1/2}1117^{1/2}\approx 57.88782255362521$
Ramified primes:   \(3\), \(1117\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-3}) \)
$\card{ \Aut(K/\Q) }$:  $2$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3}a^{6}+\frac{1}{3}a^{4}+\frac{1}{3}a^{2}$, $\frac{1}{3}a^{7}+\frac{1}{3}a^{5}+\frac{1}{3}a^{3}$, $\frac{1}{3}a^{8}-\frac{1}{3}a^{2}$, $\frac{1}{9}a^{9}-\frac{1}{3}a^{5}-\frac{4}{9}a^{3}-\frac{1}{3}a$, $\frac{1}{9}a^{10}-\frac{1}{9}a^{4}$, $\frac{1}{9}a^{11}-\frac{1}{9}a^{5}$, $\frac{1}{9}a^{12}-\frac{1}{9}a^{6}$, $\frac{1}{9}a^{13}-\frac{1}{9}a^{7}$, $\frac{1}{27}a^{14}+\frac{1}{27}a^{13}-\frac{1}{27}a^{12}-\frac{1}{27}a^{11}-\frac{1}{27}a^{8}-\frac{1}{27}a^{7}+\frac{1}{27}a^{6}+\frac{1}{27}a^{5}+\frac{1}{3}a^{4}+\frac{1}{3}a^{3}-\frac{1}{3}a^{2}-\frac{1}{3}a$, $\frac{1}{27}a^{15}+\frac{1}{27}a^{13}+\frac{1}{27}a^{11}-\frac{1}{27}a^{9}-\frac{1}{27}a^{7}+\frac{8}{27}a^{5}+\frac{1}{3}a^{3}+\frac{1}{3}a$, $\frac{1}{81}a^{16}-\frac{1}{81}a^{15}+\frac{4}{81}a^{13}-\frac{1}{81}a^{12}+\frac{2}{81}a^{10}+\frac{1}{81}a^{9}-\frac{1}{9}a^{8}+\frac{5}{81}a^{7}-\frac{8}{81}a^{6}-\frac{7}{27}a^{4}-\frac{4}{9}a^{3}+\frac{4}{9}a^{2}+\frac{1}{3}a$, $\frac{1}{81}a^{17}-\frac{1}{81}a^{15}+\frac{1}{81}a^{14}+\frac{2}{81}a^{12}-\frac{4}{81}a^{11}+\frac{1}{27}a^{10}+\frac{1}{81}a^{9}-\frac{1}{81}a^{8}-\frac{11}{81}a^{6}+\frac{13}{27}a^{5}-\frac{1}{27}a^{4}+\frac{2}{9}a^{3}+\frac{1}{9}a^{2}+\frac{1}{3}a$, $\frac{1}{81}a^{18}-\frac{1}{27}a^{13}+\frac{4}{81}a^{12}+\frac{1}{27}a^{11}+\frac{1}{27}a^{10}-\frac{1}{9}a^{8}+\frac{1}{27}a^{7}-\frac{5}{81}a^{6}-\frac{1}{27}a^{5}-\frac{10}{27}a^{4}-\frac{1}{3}a^{3}+\frac{4}{9}a^{2}+\frac{1}{3}a$, $\frac{1}{243}a^{19}-\frac{1}{243}a^{17}+\frac{1}{243}a^{16}-\frac{1}{81}a^{15}-\frac{1}{243}a^{14}+\frac{8}{243}a^{13}-\frac{1}{81}a^{12}+\frac{1}{243}a^{11}-\frac{10}{243}a^{10}+\frac{1}{81}a^{9}+\frac{19}{243}a^{8}+\frac{1}{9}a^{7}-\frac{8}{81}a^{6}-\frac{1}{27}a^{5}-\frac{4}{27}a^{4}+\frac{2}{9}a^{3}-\frac{4}{9}a^{2}$, $\frac{1}{243}a^{20}-\frac{1}{243}a^{18}+\frac{1}{243}a^{17}-\frac{4}{243}a^{15}-\frac{1}{243}a^{14}+\frac{7}{243}a^{12}-\frac{1}{243}a^{11}+\frac{1}{27}a^{10}-\frac{5}{243}a^{9}+\frac{1}{27}a^{8}+\frac{13}{81}a^{6}+\frac{4}{27}a^{5}-\frac{1}{27}a^{4}+\frac{2}{9}a^{3}+\frac{1}{9}a^{2}$, $\frac{1}{729}a^{21}+\frac{1}{729}a^{20}-\frac{1}{729}a^{19}-\frac{1}{243}a^{18}-\frac{2}{729}a^{17}-\frac{1}{729}a^{16}-\frac{5}{729}a^{15}-\frac{4}{729}a^{14}-\frac{26}{729}a^{13}-\frac{5}{243}a^{12}-\frac{16}{729}a^{11}+\frac{19}{729}a^{10}-\frac{23}{729}a^{9}+\frac{4}{243}a^{8}+\frac{11}{81}a^{7}+\frac{11}{81}a^{6}-\frac{8}{27}a^{5}+\frac{2}{27}a^{4}-\frac{5}{27}a^{3}+\frac{1}{3}a^{2}$, $\frac{1}{729}a^{22}+\frac{1}{729}a^{20}+\frac{1}{729}a^{19}-\frac{2}{729}a^{18}+\frac{1}{729}a^{17}-\frac{1}{729}a^{16}+\frac{7}{729}a^{15}-\frac{1}{729}a^{14}+\frac{8}{729}a^{13}-\frac{16}{729}a^{12}+\frac{35}{729}a^{11}+\frac{4}{81}a^{10}+\frac{2}{729}a^{9}-\frac{11}{81}a^{8}+\frac{4}{27}a^{7}-\frac{5}{27}a^{5}+\frac{1}{9}a^{4}-\frac{10}{27}a^{3}-\frac{1}{3}a^{2}$, $\frac{1}{2187}a^{23}-\frac{1}{2187}a^{22}+\frac{2}{2187}a^{20}+\frac{1}{2187}a^{19}+\frac{1}{729}a^{18}-\frac{1}{243}a^{17}-\frac{2}{729}a^{16}+\frac{1}{729}a^{15}-\frac{29}{2187}a^{14}+\frac{8}{2187}a^{13}+\frac{35}{729}a^{12}-\frac{82}{2187}a^{11}-\frac{119}{2187}a^{10}-\frac{10}{729}a^{9}+\frac{26}{243}a^{8}-\frac{10}{81}a^{7}-\frac{8}{81}a^{6}+\frac{29}{81}a^{5}+\frac{4}{81}a^{4}+\frac{5}{27}a^{3}-\frac{1}{3}a^{2}+\frac{1}{3}a$, $\frac{1}{41553}a^{24}-\frac{1}{41553}a^{23}-\frac{1}{1539}a^{22}-\frac{25}{41553}a^{21}-\frac{71}{41553}a^{20}-\frac{14}{13851}a^{19}-\frac{5}{4617}a^{18}+\frac{61}{13851}a^{17}-\frac{41}{13851}a^{16}+\frac{124}{41553}a^{15}+\frac{584}{41553}a^{14}-\frac{238}{13851}a^{13}-\frac{73}{41553}a^{12}-\frac{2252}{41553}a^{11}+\frac{743}{13851}a^{10}+\frac{55}{1539}a^{9}-\frac{410}{4617}a^{8}+\frac{1}{19}a^{7}+\frac{7}{171}a^{6}+\frac{121}{1539}a^{5}+\frac{34}{513}a^{4}-\frac{20}{171}a^{3}+\frac{26}{171}a^{2}-\frac{1}{57}a+\frac{4}{19}$, $\frac{1}{41553}a^{25}-\frac{1}{4617}a^{23}-\frac{14}{41553}a^{22}+\frac{2}{4617}a^{21}-\frac{25}{13851}a^{20}+\frac{46}{41553}a^{19}-\frac{10}{4617}a^{18}-\frac{37}{13851}a^{17}-\frac{113}{41553}a^{16}+\frac{28}{4617}a^{15}-\frac{227}{13851}a^{14}-\frac{1775}{41553}a^{13}+\frac{109}{4617}a^{12}+\frac{499}{13851}a^{11}-\frac{656}{41553}a^{10}+\frac{5}{171}a^{9}-\frac{5}{1539}a^{8}-\frac{85}{513}a^{7}+\frac{184}{1539}a^{6}-\frac{46}{513}a^{5}-\frac{686}{1539}a^{4}-\frac{70}{171}a^{3}+\frac{4}{171}a^{2}-\frac{9}{19}a+\frac{4}{19}$, $\frac{1}{373977}a^{26}-\frac{1}{373977}a^{24}-\frac{79}{373977}a^{23}-\frac{28}{124659}a^{22}+\frac{124}{373977}a^{21}-\frac{77}{41553}a^{20}+\frac{67}{124659}a^{19}+\frac{125}{41553}a^{18}+\frac{1123}{373977}a^{17}+\frac{20}{41553}a^{16}+\frac{5213}{373977}a^{15}+\frac{845}{373977}a^{14}+\frac{95}{6561}a^{13}-\frac{20690}{373977}a^{12}-\frac{94}{4617}a^{11}+\frac{4810}{124659}a^{10}-\frac{253}{41553}a^{9}+\frac{148}{4617}a^{8}+\frac{8}{1539}a^{7}-\frac{1952}{13851}a^{6}+\frac{44}{1539}a^{5}+\frac{1696}{4617}a^{4}+\frac{509}{1539}a^{3}+\frac{55}{513}a^{2}-\frac{8}{57}a-\frac{7}{19}$, $\frac{1}{373977}a^{27}-\frac{1}{373977}a^{25}+\frac{2}{373977}a^{24}+\frac{2}{124659}a^{23}-\frac{182}{373977}a^{22}-\frac{17}{41553}a^{21}-\frac{197}{124659}a^{20}+\frac{17}{13851}a^{19}+\frac{43}{373977}a^{18}-\frac{214}{41553}a^{17}+\frac{101}{19683}a^{16}+\frac{3707}{373977}a^{15}-\frac{1522}{124659}a^{14}-\frac{10466}{373977}a^{13}-\frac{767}{13851}a^{12}-\frac{134}{124659}a^{11}-\frac{326}{13851}a^{10}-\frac{20}{4617}a^{9}-\frac{59}{513}a^{8}+\frac{163}{13851}a^{7}-\frac{37}{513}a^{6}-\frac{566}{4617}a^{5}+\frac{197}{513}a^{4}+\frac{256}{513}a^{3}+\frac{1}{171}a^{2}+\frac{8}{57}a-\frac{2}{19}$, $\frac{1}{3277160451}a^{28}+\frac{349}{364128939}a^{27}-\frac{1339}{3277160451}a^{26}+\frac{38054}{3277160451}a^{25}+\frac{2083}{1092386817}a^{24}+\frac{326659}{3277160451}a^{23}+\frac{220955}{364128939}a^{22}+\frac{504128}{1092386817}a^{21}-\frac{17485}{19164681}a^{20}+\frac{3371947}{3277160451}a^{19}-\frac{231605}{121376313}a^{18}+\frac{7285577}{3277160451}a^{17}+\frac{4070078}{3277160451}a^{16}+\frac{9836635}{1092386817}a^{15}+\frac{2139280}{172482129}a^{14}+\frac{11753560}{364128939}a^{13}+\frac{25681622}{1092386817}a^{12}+\frac{16747751}{364128939}a^{11}-\frac{983624}{19164681}a^{10}-\frac{3378592}{121376313}a^{9}+\frac{16938748}{121376313}a^{8}-\frac{192614}{13486257}a^{7}-\frac{4735453}{40458771}a^{6}-\frac{4920313}{13486257}a^{5}-\frac{6494456}{13486257}a^{4}+\frac{422411}{4495419}a^{3}-\frac{32230}{65151}a^{2}+\frac{48073}{166497}a+\frac{19340}{55499}$, $\frac{1}{92\!\cdots\!71}a^{29}+\frac{70\!\cdots\!95}{92\!\cdots\!71}a^{28}+\frac{62\!\cdots\!59}{92\!\cdots\!71}a^{27}+\frac{32\!\cdots\!48}{30\!\cdots\!57}a^{26}+\frac{18\!\cdots\!81}{92\!\cdots\!71}a^{25}+\frac{36\!\cdots\!46}{92\!\cdots\!71}a^{24}+\frac{85\!\cdots\!84}{40\!\cdots\!77}a^{23}-\frac{58\!\cdots\!34}{10\!\cdots\!19}a^{22}+\frac{12\!\cdots\!26}{30\!\cdots\!57}a^{21}+\frac{15\!\cdots\!49}{92\!\cdots\!71}a^{20}-\frac{19\!\cdots\!65}{92\!\cdots\!71}a^{19}-\frac{23\!\cdots\!94}{92\!\cdots\!71}a^{18}+\frac{14\!\cdots\!23}{30\!\cdots\!57}a^{17}+\frac{15\!\cdots\!06}{92\!\cdots\!71}a^{16}-\frac{42\!\cdots\!41}{92\!\cdots\!71}a^{15}-\frac{15\!\cdots\!84}{92\!\cdots\!71}a^{14}-\frac{50\!\cdots\!17}{10\!\cdots\!19}a^{13}+\frac{72\!\cdots\!41}{16\!\cdots\!03}a^{12}+\frac{25\!\cdots\!60}{12\!\cdots\!99}a^{11}+\frac{51\!\cdots\!39}{10\!\cdots\!19}a^{10}+\frac{14\!\cdots\!48}{34\!\cdots\!73}a^{9}-\frac{20\!\cdots\!83}{34\!\cdots\!73}a^{8}+\frac{12\!\cdots\!59}{37\!\cdots\!97}a^{7}-\frac{13\!\cdots\!07}{11\!\cdots\!91}a^{6}+\frac{46\!\cdots\!36}{42\!\cdots\!33}a^{5}-\frac{77\!\cdots\!42}{37\!\cdots\!97}a^{4}+\frac{12\!\cdots\!73}{12\!\cdots\!99}a^{3}+\frac{12\!\cdots\!40}{42\!\cdots\!33}a^{2}-\frac{14\!\cdots\!52}{46\!\cdots\!37}a+\frac{42\!\cdots\!96}{15\!\cdots\!79}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $3$

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $14$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -\frac{17240303365876863765732656419376340682469}{59058307037381865563052279638600485479572673} a^{29} + \frac{10166566551583970140711423627320830797232}{59058307037381865563052279638600485479572673} a^{28} - \frac{67678054620361900780146076046996910202402}{19686102345793955187684093212866828493190891} a^{27} + \frac{230829970243523141033020719991861178114737}{19686102345793955187684093212866828493190891} a^{26} - \frac{1113395891465648914640434494394938747891794}{19686102345793955187684093212866828493190891} a^{25} + \frac{3822240881692960369901247648111492149173117}{19686102345793955187684093212866828493190891} a^{24} - \frac{37848747529731382545608466649026300153743839}{59058307037381865563052279638600485479572673} a^{23} + \frac{104728577812217625409984431483005409814057531}{59058307037381865563052279638600485479572673} a^{22} - \frac{33140300279142901862255430506119199291802538}{6562034115264651729228031070955609497730297} a^{21} + \frac{718577946267968546054639497068341451751309786}{59058307037381865563052279638600485479572673} a^{20} - \frac{1806539382225062528177134129976064227160314974}{59058307037381865563052279638600485479572673} a^{19} + \frac{1518124354046899318167390245430748440087923000}{19686102345793955187684093212866828493190891} a^{18} - \frac{4041228218252847128907407260893834677055345163}{19686102345793955187684093212866828493190891} a^{17} + \frac{16683862372054993358864746794673323917019413}{31700647899829235406898700825872509650871} a^{16} - \frac{24559530661140143253979389375113794120457830973}{19686102345793955187684093212866828493190891} a^{15} + \frac{165250949628186772549645709958918208645653101843}{59058307037381865563052279638600485479572673} a^{14} - \frac{354379390190139123097533623815978113935669118890}{59058307037381865563052279638600485479572673} a^{13} + \frac{78473111054066411257168767350698673618290533971}{6562034115264651729228031070955609497730297} a^{12} - \frac{410981901890143514005765414123533052449595104767}{19686102345793955187684093212866828493190891} a^{11} + \frac{67253612884774521743965756138194203741805595210}{2187344705088217243076010356985203165910099} a^{10} - \frac{27729354552007667643772408710133672929492078329}{729114901696072414358670118995067721970033} a^{9} + \frac{87248112007248015454744277625518328697967416088}{2187344705088217243076010356985203165910099} a^{8} - \frac{78176582382846781161047682008722997620533228728}{2187344705088217243076010356985203165910099} a^{7} + \frac{15051782725862379476775773291366471061664238}{556151717540863779068398260103026485103} a^{6} - \frac{12499233710878423811675624348901580021467635657}{729114901696072414358670118995067721970033} a^{5} + \frac{762835590123433623570483732659219489381153540}{81012766855119157150963346555007524663337} a^{4} - \frac{41406321804769367425051723860403850514482815}{9001418539457684127884816283889724962593} a^{3} + \frac{47338291813799531068085097058835292988823156}{27004255618373052383654448851669174887779} a^{2} - \frac{3793307478431774579124009715514562797941385}{9001418539457684127884816283889724962593} a + \frac{138764118402052272380358033203706218271370}{3000472846485894709294938761296574987531} \)  (order $6$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{14\!\cdots\!66}{34\!\cdots\!73}a^{29}-\frac{90\!\cdots\!28}{30\!\cdots\!57}a^{28}+\frac{52\!\cdots\!71}{10\!\cdots\!19}a^{27}-\frac{54\!\cdots\!69}{30\!\cdots\!57}a^{26}+\frac{26\!\cdots\!88}{30\!\cdots\!57}a^{25}-\frac{30\!\cdots\!98}{10\!\cdots\!19}a^{24}+\frac{30\!\cdots\!61}{30\!\cdots\!57}a^{23}-\frac{27\!\cdots\!08}{10\!\cdots\!19}a^{22}+\frac{26\!\cdots\!91}{34\!\cdots\!73}a^{21}-\frac{63\!\cdots\!19}{34\!\cdots\!73}a^{20}+\frac{14\!\cdots\!96}{30\!\cdots\!57}a^{19}-\frac{12\!\cdots\!64}{10\!\cdots\!19}a^{18}+\frac{96\!\cdots\!16}{30\!\cdots\!57}a^{17}-\frac{24\!\cdots\!61}{30\!\cdots\!57}a^{16}+\frac{19\!\cdots\!19}{10\!\cdots\!19}a^{15}-\frac{13\!\cdots\!05}{30\!\cdots\!57}a^{14}+\frac{95\!\cdots\!37}{10\!\cdots\!19}a^{13}-\frac{33\!\cdots\!04}{17\!\cdots\!67}a^{12}+\frac{11\!\cdots\!43}{34\!\cdots\!73}a^{11}-\frac{16\!\cdots\!49}{34\!\cdots\!73}a^{10}+\frac{69\!\cdots\!14}{11\!\cdots\!91}a^{9}-\frac{73\!\cdots\!69}{11\!\cdots\!91}a^{8}+\frac{22\!\cdots\!66}{37\!\cdots\!97}a^{7}-\frac{56\!\cdots\!20}{12\!\cdots\!99}a^{6}+\frac{36\!\cdots\!97}{12\!\cdots\!99}a^{5}-\frac{20\!\cdots\!27}{12\!\cdots\!99}a^{4}+\frac{33\!\cdots\!72}{42\!\cdots\!33}a^{3}-\frac{43\!\cdots\!53}{14\!\cdots\!11}a^{2}+\frac{36\!\cdots\!22}{46\!\cdots\!37}a-\frac{10\!\cdots\!13}{12\!\cdots\!77}$, $\frac{17\!\cdots\!49}{92\!\cdots\!71}a^{29}-\frac{28\!\cdots\!85}{92\!\cdots\!71}a^{28}+\frac{11\!\cdots\!05}{92\!\cdots\!71}a^{27}-\frac{11\!\cdots\!71}{30\!\cdots\!57}a^{26}+\frac{10\!\cdots\!23}{92\!\cdots\!71}a^{25}-\frac{52\!\cdots\!02}{92\!\cdots\!71}a^{24}+\frac{17\!\cdots\!75}{92\!\cdots\!71}a^{23}-\frac{19\!\cdots\!85}{30\!\cdots\!57}a^{22}+\frac{52\!\cdots\!86}{30\!\cdots\!57}a^{21}-\frac{44\!\cdots\!95}{92\!\cdots\!71}a^{20}+\frac{10\!\cdots\!39}{92\!\cdots\!71}a^{19}-\frac{26\!\cdots\!88}{92\!\cdots\!71}a^{18}+\frac{22\!\cdots\!72}{30\!\cdots\!57}a^{17}-\frac{18\!\cdots\!79}{92\!\cdots\!71}a^{16}+\frac{46\!\cdots\!96}{92\!\cdots\!71}a^{15}-\frac{10\!\cdots\!97}{92\!\cdots\!71}a^{14}+\frac{80\!\cdots\!49}{30\!\cdots\!57}a^{13}-\frac{90\!\cdots\!97}{16\!\cdots\!03}a^{12}+\frac{11\!\cdots\!56}{10\!\cdots\!19}a^{11}-\frac{21\!\cdots\!76}{11\!\cdots\!91}a^{10}+\frac{91\!\cdots\!77}{34\!\cdots\!73}a^{9}-\frac{10\!\cdots\!54}{34\!\cdots\!73}a^{8}+\frac{36\!\cdots\!48}{11\!\cdots\!91}a^{7}-\frac{30\!\cdots\!45}{11\!\cdots\!91}a^{6}+\frac{72\!\cdots\!22}{37\!\cdots\!97}a^{5}-\frac{14\!\cdots\!94}{12\!\cdots\!99}a^{4}+\frac{24\!\cdots\!29}{42\!\cdots\!33}a^{3}-\frac{40\!\cdots\!00}{15\!\cdots\!79}a^{2}+\frac{12\!\cdots\!45}{15\!\cdots\!79}a-\frac{15\!\cdots\!39}{15\!\cdots\!79}$, $\frac{60\!\cdots\!98}{92\!\cdots\!71}a^{29}-\frac{32\!\cdots\!34}{92\!\cdots\!71}a^{28}+\frac{70\!\cdots\!62}{92\!\cdots\!71}a^{27}-\frac{23\!\cdots\!96}{92\!\cdots\!71}a^{26}+\frac{50\!\cdots\!48}{40\!\cdots\!77}a^{25}-\frac{39\!\cdots\!48}{92\!\cdots\!71}a^{24}+\frac{12\!\cdots\!69}{92\!\cdots\!71}a^{23}-\frac{11\!\cdots\!35}{30\!\cdots\!57}a^{22}+\frac{33\!\cdots\!58}{30\!\cdots\!57}a^{21}-\frac{24\!\cdots\!86}{92\!\cdots\!71}a^{20}+\frac{61\!\cdots\!99}{92\!\cdots\!71}a^{19}-\frac{15\!\cdots\!00}{92\!\cdots\!71}a^{18}+\frac{41\!\cdots\!27}{92\!\cdots\!71}a^{17}-\frac{10\!\cdots\!33}{92\!\cdots\!71}a^{16}+\frac{25\!\cdots\!24}{92\!\cdots\!71}a^{15}-\frac{55\!\cdots\!62}{92\!\cdots\!71}a^{14}+\frac{39\!\cdots\!96}{30\!\cdots\!57}a^{13}-\frac{41\!\cdots\!57}{16\!\cdots\!03}a^{12}+\frac{45\!\cdots\!82}{10\!\cdots\!19}a^{11}-\frac{67\!\cdots\!19}{10\!\cdots\!19}a^{10}+\frac{91\!\cdots\!93}{11\!\cdots\!91}a^{9}-\frac{28\!\cdots\!60}{34\!\cdots\!73}a^{8}+\frac{83\!\cdots\!01}{11\!\cdots\!91}a^{7}-\frac{62\!\cdots\!43}{11\!\cdots\!91}a^{6}+\frac{12\!\cdots\!45}{37\!\cdots\!97}a^{5}-\frac{69\!\cdots\!90}{37\!\cdots\!97}a^{4}+\frac{11\!\cdots\!85}{12\!\cdots\!99}a^{3}-\frac{13\!\cdots\!50}{42\!\cdots\!33}a^{2}+\frac{32\!\cdots\!35}{46\!\cdots\!37}a-\frac{85\!\cdots\!64}{15\!\cdots\!79}$, $\frac{95\!\cdots\!33}{30\!\cdots\!57}a^{29}-\frac{28\!\cdots\!75}{92\!\cdots\!71}a^{28}+\frac{41\!\cdots\!08}{11\!\cdots\!91}a^{27}-\frac{12\!\cdots\!89}{92\!\cdots\!71}a^{26}+\frac{59\!\cdots\!58}{92\!\cdots\!71}a^{25}-\frac{70\!\cdots\!42}{30\!\cdots\!57}a^{24}+\frac{70\!\cdots\!36}{92\!\cdots\!71}a^{23}-\frac{65\!\cdots\!51}{30\!\cdots\!57}a^{22}+\frac{18\!\cdots\!53}{30\!\cdots\!57}a^{21}-\frac{45\!\cdots\!86}{30\!\cdots\!57}a^{20}+\frac{34\!\cdots\!15}{92\!\cdots\!71}a^{19}-\frac{96\!\cdots\!50}{10\!\cdots\!19}a^{18}+\frac{22\!\cdots\!08}{92\!\cdots\!71}a^{17}-\frac{58\!\cdots\!58}{92\!\cdots\!71}a^{16}+\frac{20\!\cdots\!48}{13\!\cdots\!59}a^{15}-\frac{31\!\cdots\!15}{92\!\cdots\!71}a^{14}+\frac{22\!\cdots\!97}{30\!\cdots\!57}a^{13}-\frac{24\!\cdots\!17}{16\!\cdots\!03}a^{12}+\frac{90\!\cdots\!57}{34\!\cdots\!73}a^{11}-\frac{41\!\cdots\!15}{10\!\cdots\!19}a^{10}+\frac{17\!\cdots\!64}{34\!\cdots\!73}a^{9}-\frac{18\!\cdots\!47}{34\!\cdots\!73}a^{8}+\frac{57\!\cdots\!54}{11\!\cdots\!91}a^{7}-\frac{44\!\cdots\!03}{11\!\cdots\!91}a^{6}+\frac{32\!\cdots\!20}{12\!\cdots\!99}a^{5}-\frac{53\!\cdots\!81}{37\!\cdots\!97}a^{4}+\frac{89\!\cdots\!16}{12\!\cdots\!99}a^{3}-\frac{11\!\cdots\!70}{42\!\cdots\!33}a^{2}+\frac{34\!\cdots\!02}{46\!\cdots\!37}a-\frac{12\!\cdots\!39}{15\!\cdots\!79}$, $\frac{17\!\cdots\!17}{10\!\cdots\!19}a^{29}-\frac{15\!\cdots\!73}{11\!\cdots\!91}a^{28}+\frac{62\!\cdots\!98}{30\!\cdots\!57}a^{27}-\frac{22\!\cdots\!08}{30\!\cdots\!57}a^{26}+\frac{10\!\cdots\!17}{30\!\cdots\!57}a^{25}-\frac{36\!\cdots\!66}{30\!\cdots\!57}a^{24}+\frac{12\!\cdots\!96}{30\!\cdots\!57}a^{23}-\frac{34\!\cdots\!20}{30\!\cdots\!57}a^{22}+\frac{96\!\cdots\!30}{30\!\cdots\!57}a^{21}-\frac{78\!\cdots\!75}{10\!\cdots\!19}a^{20}+\frac{19\!\cdots\!05}{10\!\cdots\!19}a^{19}-\frac{14\!\cdots\!72}{30\!\cdots\!57}a^{18}+\frac{39\!\cdots\!37}{30\!\cdots\!57}a^{17}-\frac{10\!\cdots\!70}{30\!\cdots\!57}a^{16}+\frac{24\!\cdots\!78}{30\!\cdots\!57}a^{15}-\frac{54\!\cdots\!63}{30\!\cdots\!57}a^{14}+\frac{11\!\cdots\!95}{30\!\cdots\!57}a^{13}-\frac{12\!\cdots\!83}{16\!\cdots\!03}a^{12}+\frac{13\!\cdots\!65}{10\!\cdots\!19}a^{11}-\frac{20\!\cdots\!95}{10\!\cdots\!19}a^{10}+\frac{86\!\cdots\!55}{34\!\cdots\!73}a^{9}-\frac{10\!\cdots\!18}{37\!\cdots\!97}a^{8}+\frac{12\!\cdots\!70}{49\!\cdots\!17}a^{7}-\frac{21\!\cdots\!15}{11\!\cdots\!91}a^{6}+\frac{46\!\cdots\!91}{37\!\cdots\!97}a^{5}-\frac{25\!\cdots\!40}{37\!\cdots\!97}a^{4}+\frac{42\!\cdots\!53}{12\!\cdots\!99}a^{3}-\frac{55\!\cdots\!09}{42\!\cdots\!33}a^{2}+\frac{52\!\cdots\!58}{15\!\cdots\!79}a-\frac{61\!\cdots\!26}{15\!\cdots\!79}$, $\frac{25\!\cdots\!29}{48\!\cdots\!09}a^{29}-\frac{17\!\cdots\!46}{48\!\cdots\!09}a^{28}+\frac{29\!\cdots\!62}{48\!\cdots\!09}a^{27}-\frac{11\!\cdots\!24}{53\!\cdots\!01}a^{26}+\frac{49\!\cdots\!12}{48\!\cdots\!09}a^{25}-\frac{17\!\cdots\!52}{48\!\cdots\!09}a^{24}+\frac{57\!\cdots\!06}{48\!\cdots\!09}a^{23}-\frac{52\!\cdots\!49}{16\!\cdots\!03}a^{22}+\frac{15\!\cdots\!41}{16\!\cdots\!03}a^{21}-\frac{10\!\cdots\!57}{48\!\cdots\!09}a^{20}+\frac{27\!\cdots\!95}{48\!\cdots\!09}a^{19}-\frac{69\!\cdots\!42}{48\!\cdots\!09}a^{18}+\frac{26\!\cdots\!36}{70\!\cdots\!61}a^{17}-\frac{47\!\cdots\!67}{48\!\cdots\!09}a^{16}+\frac{11\!\cdots\!10}{48\!\cdots\!09}a^{15}-\frac{25\!\cdots\!27}{48\!\cdots\!09}a^{14}+\frac{17\!\cdots\!74}{16\!\cdots\!03}a^{13}-\frac{35\!\cdots\!39}{16\!\cdots\!03}a^{12}+\frac{11\!\cdots\!69}{28\!\cdots\!79}a^{11}-\frac{34\!\cdots\!62}{59\!\cdots\!89}a^{10}+\frac{12\!\cdots\!78}{17\!\cdots\!67}a^{9}-\frac{13\!\cdots\!57}{17\!\cdots\!67}a^{8}+\frac{21\!\cdots\!34}{31\!\cdots\!31}a^{7}-\frac{30\!\cdots\!39}{59\!\cdots\!89}a^{6}+\frac{65\!\cdots\!26}{19\!\cdots\!63}a^{5}-\frac{11\!\cdots\!39}{66\!\cdots\!21}a^{4}+\frac{19\!\cdots\!83}{22\!\cdots\!07}a^{3}-\frac{27\!\cdots\!61}{82\!\cdots\!41}a^{2}+\frac{20\!\cdots\!61}{24\!\cdots\!23}a-\frac{71\!\cdots\!06}{82\!\cdots\!41}$, $\frac{14\!\cdots\!42}{92\!\cdots\!71}a^{29}-\frac{14\!\cdots\!31}{92\!\cdots\!71}a^{28}+\frac{16\!\cdots\!35}{92\!\cdots\!71}a^{27}-\frac{64\!\cdots\!38}{92\!\cdots\!71}a^{26}+\frac{29\!\cdots\!08}{92\!\cdots\!71}a^{25}-\frac{10\!\cdots\!85}{92\!\cdots\!71}a^{24}+\frac{34\!\cdots\!00}{92\!\cdots\!71}a^{23}-\frac{32\!\cdots\!89}{30\!\cdots\!57}a^{22}+\frac{93\!\cdots\!67}{30\!\cdots\!57}a^{21}-\frac{68\!\cdots\!09}{92\!\cdots\!71}a^{20}+\frac{17\!\cdots\!13}{92\!\cdots\!71}a^{19}-\frac{43\!\cdots\!83}{92\!\cdots\!71}a^{18}+\frac{11\!\cdots\!16}{92\!\cdots\!71}a^{17}-\frac{29\!\cdots\!44}{92\!\cdots\!71}a^{16}+\frac{70\!\cdots\!99}{92\!\cdots\!71}a^{15}-\frac{15\!\cdots\!71}{92\!\cdots\!71}a^{14}+\frac{11\!\cdots\!09}{30\!\cdots\!57}a^{13}-\frac{12\!\cdots\!69}{16\!\cdots\!03}a^{12}+\frac{45\!\cdots\!54}{34\!\cdots\!73}a^{11}-\frac{22\!\cdots\!84}{11\!\cdots\!91}a^{10}+\frac{87\!\cdots\!23}{34\!\cdots\!73}a^{9}-\frac{94\!\cdots\!43}{34\!\cdots\!73}a^{8}+\frac{29\!\cdots\!34}{11\!\cdots\!91}a^{7}-\frac{22\!\cdots\!58}{11\!\cdots\!91}a^{6}+\frac{16\!\cdots\!34}{12\!\cdots\!99}a^{5}-\frac{92\!\cdots\!55}{12\!\cdots\!99}a^{4}+\frac{67\!\cdots\!68}{18\!\cdots\!71}a^{3}-\frac{23\!\cdots\!04}{15\!\cdots\!79}a^{2}+\frac{18\!\cdots\!50}{46\!\cdots\!37}a-\frac{32\!\cdots\!42}{67\!\cdots\!73}$, $\frac{29\!\cdots\!17}{92\!\cdots\!71}a^{29}-\frac{21\!\cdots\!49}{92\!\cdots\!71}a^{28}+\frac{34\!\cdots\!36}{92\!\cdots\!71}a^{27}-\frac{12\!\cdots\!91}{92\!\cdots\!71}a^{26}+\frac{58\!\cdots\!52}{92\!\cdots\!71}a^{25}-\frac{20\!\cdots\!49}{92\!\cdots\!71}a^{24}+\frac{66\!\cdots\!84}{92\!\cdots\!71}a^{23}-\frac{62\!\cdots\!35}{30\!\cdots\!57}a^{22}+\frac{19\!\cdots\!31}{34\!\cdots\!73}a^{21}-\frac{12\!\cdots\!27}{92\!\cdots\!71}a^{20}+\frac{32\!\cdots\!80}{92\!\cdots\!71}a^{19}-\frac{81\!\cdots\!37}{92\!\cdots\!71}a^{18}+\frac{21\!\cdots\!37}{92\!\cdots\!71}a^{17}-\frac{55\!\cdots\!68}{92\!\cdots\!71}a^{16}+\frac{57\!\cdots\!50}{40\!\cdots\!77}a^{15}-\frac{29\!\cdots\!74}{92\!\cdots\!71}a^{14}+\frac{21\!\cdots\!08}{30\!\cdots\!57}a^{13}-\frac{74\!\cdots\!76}{53\!\cdots\!01}a^{12}+\frac{24\!\cdots\!28}{10\!\cdots\!19}a^{11}-\frac{37\!\cdots\!62}{10\!\cdots\!19}a^{10}+\frac{15\!\cdots\!03}{34\!\cdots\!73}a^{9}-\frac{16\!\cdots\!14}{34\!\cdots\!73}a^{8}+\frac{49\!\cdots\!51}{11\!\cdots\!91}a^{7}-\frac{12\!\cdots\!99}{37\!\cdots\!97}a^{6}+\frac{80\!\cdots\!87}{37\!\cdots\!97}a^{5}-\frac{44\!\cdots\!01}{37\!\cdots\!97}a^{4}+\frac{72\!\cdots\!46}{12\!\cdots\!99}a^{3}-\frac{94\!\cdots\!88}{42\!\cdots\!33}a^{2}+\frac{26\!\cdots\!52}{46\!\cdots\!37}a-\frac{98\!\cdots\!72}{15\!\cdots\!79}$, $\frac{24\!\cdots\!00}{30\!\cdots\!57}a^{29}-\frac{47\!\cdots\!00}{92\!\cdots\!71}a^{28}+\frac{29\!\cdots\!66}{30\!\cdots\!57}a^{27}-\frac{30\!\cdots\!43}{92\!\cdots\!71}a^{26}+\frac{14\!\cdots\!56}{92\!\cdots\!71}a^{25}-\frac{16\!\cdots\!15}{30\!\cdots\!57}a^{24}+\frac{16\!\cdots\!42}{92\!\cdots\!71}a^{23}-\frac{17\!\cdots\!18}{34\!\cdots\!73}a^{22}+\frac{43\!\cdots\!37}{30\!\cdots\!57}a^{21}-\frac{10\!\cdots\!10}{30\!\cdots\!57}a^{20}+\frac{79\!\cdots\!17}{92\!\cdots\!71}a^{19}-\frac{66\!\cdots\!38}{30\!\cdots\!57}a^{18}+\frac{53\!\cdots\!49}{92\!\cdots\!71}a^{17}-\frac{13\!\cdots\!93}{92\!\cdots\!71}a^{16}+\frac{10\!\cdots\!52}{30\!\cdots\!57}a^{15}-\frac{72\!\cdots\!44}{92\!\cdots\!71}a^{14}+\frac{17\!\cdots\!75}{10\!\cdots\!19}a^{13}-\frac{54\!\cdots\!34}{16\!\cdots\!03}a^{12}+\frac{60\!\cdots\!69}{10\!\cdots\!19}a^{11}-\frac{29\!\cdots\!63}{34\!\cdots\!73}a^{10}+\frac{45\!\cdots\!67}{42\!\cdots\!33}a^{9}-\frac{38\!\cdots\!20}{34\!\cdots\!73}a^{8}+\frac{38\!\cdots\!70}{37\!\cdots\!97}a^{7}-\frac{86\!\cdots\!47}{11\!\cdots\!91}a^{6}+\frac{18\!\cdots\!83}{37\!\cdots\!97}a^{5}-\frac{11\!\cdots\!31}{42\!\cdots\!33}a^{4}+\frac{53\!\cdots\!82}{42\!\cdots\!33}a^{3}-\frac{67\!\cdots\!86}{14\!\cdots\!11}a^{2}+\frac{51\!\cdots\!38}{46\!\cdots\!37}a-\frac{16\!\cdots\!88}{15\!\cdots\!79}$, $\frac{32\!\cdots\!48}{92\!\cdots\!71}a^{29}-\frac{18\!\cdots\!61}{92\!\cdots\!71}a^{28}+\frac{38\!\cdots\!72}{92\!\cdots\!71}a^{27}-\frac{14\!\cdots\!04}{10\!\cdots\!19}a^{26}+\frac{62\!\cdots\!04}{92\!\cdots\!71}a^{25}-\frac{21\!\cdots\!20}{92\!\cdots\!71}a^{24}+\frac{70\!\cdots\!17}{92\!\cdots\!71}a^{23}-\frac{65\!\cdots\!08}{30\!\cdots\!57}a^{22}+\frac{18\!\cdots\!00}{30\!\cdots\!57}a^{21}-\frac{13\!\cdots\!65}{92\!\cdots\!71}a^{20}+\frac{33\!\cdots\!17}{92\!\cdots\!71}a^{19}-\frac{84\!\cdots\!60}{92\!\cdots\!71}a^{18}+\frac{75\!\cdots\!28}{30\!\cdots\!57}a^{17}-\frac{57\!\cdots\!98}{92\!\cdots\!71}a^{16}+\frac{59\!\cdots\!79}{40\!\cdots\!77}a^{15}-\frac{30\!\cdots\!91}{92\!\cdots\!71}a^{14}+\frac{21\!\cdots\!95}{30\!\cdots\!57}a^{13}-\frac{22\!\cdots\!07}{16\!\cdots\!03}a^{12}+\frac{25\!\cdots\!56}{10\!\cdots\!19}a^{11}-\frac{37\!\cdots\!15}{10\!\cdots\!19}a^{10}+\frac{15\!\cdots\!27}{34\!\cdots\!73}a^{9}-\frac{15\!\cdots\!89}{34\!\cdots\!73}a^{8}+\frac{47\!\cdots\!39}{11\!\cdots\!91}a^{7}-\frac{35\!\cdots\!60}{11\!\cdots\!91}a^{6}+\frac{74\!\cdots\!74}{37\!\cdots\!97}a^{5}-\frac{40\!\cdots\!30}{37\!\cdots\!97}a^{4}+\frac{65\!\cdots\!47}{12\!\cdots\!99}a^{3}-\frac{82\!\cdots\!83}{42\!\cdots\!33}a^{2}+\frac{21\!\cdots\!47}{46\!\cdots\!37}a-\frac{69\!\cdots\!49}{15\!\cdots\!79}$, $\frac{91\!\cdots\!82}{92\!\cdots\!71}a^{29}-\frac{18\!\cdots\!31}{30\!\cdots\!57}a^{28}+\frac{10\!\cdots\!94}{92\!\cdots\!71}a^{27}-\frac{37\!\cdots\!63}{92\!\cdots\!71}a^{26}+\frac{59\!\cdots\!59}{30\!\cdots\!57}a^{25}-\frac{61\!\cdots\!35}{92\!\cdots\!71}a^{24}+\frac{67\!\cdots\!21}{30\!\cdots\!57}a^{23}-\frac{18\!\cdots\!00}{30\!\cdots\!57}a^{22}+\frac{19\!\cdots\!59}{11\!\cdots\!91}a^{21}-\frac{38\!\cdots\!57}{92\!\cdots\!71}a^{20}+\frac{32\!\cdots\!79}{30\!\cdots\!57}a^{19}-\frac{24\!\cdots\!28}{92\!\cdots\!71}a^{18}+\frac{64\!\cdots\!86}{92\!\cdots\!71}a^{17}-\frac{55\!\cdots\!40}{30\!\cdots\!57}a^{16}+\frac{39\!\cdots\!05}{92\!\cdots\!71}a^{15}-\frac{29\!\cdots\!22}{30\!\cdots\!57}a^{14}+\frac{63\!\cdots\!40}{30\!\cdots\!57}a^{13}-\frac{73\!\cdots\!98}{17\!\cdots\!67}a^{12}+\frac{24\!\cdots\!65}{34\!\cdots\!73}a^{11}-\frac{36\!\cdots\!64}{34\!\cdots\!73}a^{10}+\frac{44\!\cdots\!93}{34\!\cdots\!73}a^{9}-\frac{15\!\cdots\!86}{11\!\cdots\!91}a^{8}+\frac{14\!\cdots\!08}{11\!\cdots\!91}a^{7}-\frac{41\!\cdots\!78}{42\!\cdots\!33}a^{6}+\frac{83\!\cdots\!35}{12\!\cdots\!99}a^{5}-\frac{49\!\cdots\!70}{12\!\cdots\!99}a^{4}+\frac{87\!\cdots\!24}{42\!\cdots\!33}a^{3}-\frac{12\!\cdots\!69}{14\!\cdots\!11}a^{2}+\frac{10\!\cdots\!55}{46\!\cdots\!37}a-\frac{41\!\cdots\!37}{15\!\cdots\!79}$, $\frac{83\!\cdots\!32}{92\!\cdots\!71}a^{29}-\frac{47\!\cdots\!40}{72\!\cdots\!73}a^{28}+\frac{97\!\cdots\!42}{92\!\cdots\!71}a^{27}-\frac{11\!\cdots\!19}{30\!\cdots\!57}a^{26}+\frac{16\!\cdots\!92}{92\!\cdots\!71}a^{25}-\frac{57\!\cdots\!04}{92\!\cdots\!71}a^{24}+\frac{18\!\cdots\!26}{92\!\cdots\!71}a^{23}-\frac{17\!\cdots\!52}{30\!\cdots\!57}a^{22}+\frac{49\!\cdots\!58}{30\!\cdots\!57}a^{21}-\frac{36\!\cdots\!64}{92\!\cdots\!71}a^{20}+\frac{90\!\cdots\!10}{92\!\cdots\!71}a^{19}-\frac{22\!\cdots\!46}{92\!\cdots\!71}a^{18}+\frac{74\!\cdots\!89}{11\!\cdots\!91}a^{17}-\frac{15\!\cdots\!75}{92\!\cdots\!71}a^{16}+\frac{37\!\cdots\!89}{92\!\cdots\!71}a^{15}-\frac{83\!\cdots\!62}{92\!\cdots\!71}a^{14}+\frac{59\!\cdots\!15}{30\!\cdots\!57}a^{13}-\frac{62\!\cdots\!01}{16\!\cdots\!03}a^{12}+\frac{69\!\cdots\!72}{10\!\cdots\!19}a^{11}-\frac{34\!\cdots\!62}{34\!\cdots\!73}a^{10}+\frac{42\!\cdots\!48}{34\!\cdots\!73}a^{9}-\frac{45\!\cdots\!50}{34\!\cdots\!73}a^{8}+\frac{59\!\cdots\!13}{49\!\cdots\!17}a^{7}-\frac{10\!\cdots\!61}{11\!\cdots\!91}a^{6}+\frac{22\!\cdots\!34}{37\!\cdots\!97}a^{5}-\frac{13\!\cdots\!16}{42\!\cdots\!33}a^{4}+\frac{66\!\cdots\!78}{42\!\cdots\!33}a^{3}-\frac{85\!\cdots\!49}{14\!\cdots\!11}a^{2}+\frac{68\!\cdots\!89}{46\!\cdots\!37}a-\frac{24\!\cdots\!83}{15\!\cdots\!79}$, $\frac{75\!\cdots\!98}{92\!\cdots\!71}a^{29}-\frac{57\!\cdots\!52}{92\!\cdots\!71}a^{28}+\frac{89\!\cdots\!01}{92\!\cdots\!71}a^{27}-\frac{13\!\cdots\!98}{40\!\cdots\!77}a^{26}+\frac{15\!\cdots\!78}{92\!\cdots\!71}a^{25}-\frac{52\!\cdots\!53}{92\!\cdots\!71}a^{24}+\frac{17\!\cdots\!51}{92\!\cdots\!71}a^{23}-\frac{16\!\cdots\!90}{30\!\cdots\!57}a^{22}+\frac{15\!\cdots\!60}{10\!\cdots\!19}a^{21}-\frac{33\!\cdots\!14}{92\!\cdots\!71}a^{20}+\frac{83\!\cdots\!14}{92\!\cdots\!71}a^{19}-\frac{21\!\cdots\!60}{92\!\cdots\!71}a^{18}+\frac{56\!\cdots\!84}{92\!\cdots\!71}a^{17}-\frac{14\!\cdots\!04}{92\!\cdots\!71}a^{16}+\frac{34\!\cdots\!99}{92\!\cdots\!71}a^{15}-\frac{77\!\cdots\!79}{92\!\cdots\!71}a^{14}+\frac{43\!\cdots\!98}{24\!\cdots\!91}a^{13}-\frac{34\!\cdots\!27}{94\!\cdots\!93}a^{12}+\frac{64\!\cdots\!81}{10\!\cdots\!19}a^{11}-\frac{96\!\cdots\!93}{10\!\cdots\!19}a^{10}+\frac{40\!\cdots\!45}{34\!\cdots\!73}a^{9}-\frac{43\!\cdots\!79}{34\!\cdots\!73}a^{8}+\frac{13\!\cdots\!22}{11\!\cdots\!91}a^{7}-\frac{11\!\cdots\!40}{12\!\cdots\!99}a^{6}+\frac{21\!\cdots\!53}{37\!\cdots\!97}a^{5}-\frac{11\!\cdots\!40}{37\!\cdots\!97}a^{4}+\frac{19\!\cdots\!16}{12\!\cdots\!99}a^{3}-\frac{25\!\cdots\!03}{42\!\cdots\!33}a^{2}+\frac{73\!\cdots\!86}{46\!\cdots\!37}a-\frac{28\!\cdots\!96}{15\!\cdots\!79}$, $\frac{50\!\cdots\!63}{92\!\cdots\!71}a^{29}+\frac{45\!\cdots\!51}{30\!\cdots\!57}a^{28}+\frac{58\!\cdots\!63}{92\!\cdots\!71}a^{27}-\frac{16\!\cdots\!85}{92\!\cdots\!71}a^{26}+\frac{28\!\cdots\!50}{30\!\cdots\!57}a^{25}-\frac{27\!\cdots\!84}{92\!\cdots\!71}a^{24}+\frac{10\!\cdots\!59}{10\!\cdots\!19}a^{23}-\frac{81\!\cdots\!45}{30\!\cdots\!57}a^{22}+\frac{23\!\cdots\!56}{30\!\cdots\!57}a^{21}-\frac{16\!\cdots\!68}{92\!\cdots\!71}a^{20}+\frac{13\!\cdots\!43}{30\!\cdots\!57}a^{19}-\frac{10\!\cdots\!83}{92\!\cdots\!71}a^{18}+\frac{28\!\cdots\!35}{92\!\cdots\!71}a^{17}-\frac{23\!\cdots\!65}{30\!\cdots\!57}a^{16}+\frac{16\!\cdots\!99}{92\!\cdots\!71}a^{15}-\frac{15\!\cdots\!83}{37\!\cdots\!97}a^{14}+\frac{26\!\cdots\!42}{30\!\cdots\!57}a^{13}-\frac{26\!\cdots\!13}{16\!\cdots\!03}a^{12}+\frac{28\!\cdots\!91}{10\!\cdots\!19}a^{11}-\frac{39\!\cdots\!75}{10\!\cdots\!19}a^{10}+\frac{15\!\cdots\!12}{34\!\cdots\!73}a^{9}-\frac{49\!\cdots\!11}{11\!\cdots\!91}a^{8}+\frac{40\!\cdots\!05}{11\!\cdots\!91}a^{7}-\frac{27\!\cdots\!36}{11\!\cdots\!91}a^{6}+\frac{52\!\cdots\!06}{37\!\cdots\!97}a^{5}-\frac{26\!\cdots\!54}{37\!\cdots\!97}a^{4}+\frac{40\!\cdots\!36}{12\!\cdots\!99}a^{3}-\frac{34\!\cdots\!58}{42\!\cdots\!33}a^{2}+\frac{43\!\cdots\!08}{46\!\cdots\!37}a+\frac{25\!\cdots\!07}{15\!\cdots\!79}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 3232250515402658.0 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{15}\cdot 3232250515402658.0 \cdot 1}{6\cdot\sqrt{67540340288911750220987142641365428116063232133203}}\cr\approx \mathstrut & 61.5559681346093 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^30 - x^29 + 12*x^28 - 45*x^27 + 210*x^26 - 744*x^25 + 2465*x^24 - 6965*x^23 + 19758*x^22 - 48686*x^21 + 121619*x^20 - 306546*x^19 + 810012*x^18 - 2087415*x^17 + 5002572*x^16 - 11311375*x^15 + 24424402*x^14 - 49257771*x^13 + 88022499*x^12 - 134078913*x^11 + 172501038*x^10 - 188691174*x^9 + 176841252*x^8 - 141293241*x^7 + 95362353*x^6 - 55362204*x^5 + 28414476*x^4 - 12173571*x^3 + 3774762*x^2 - 708588*x + 59049)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^30 - x^29 + 12*x^28 - 45*x^27 + 210*x^26 - 744*x^25 + 2465*x^24 - 6965*x^23 + 19758*x^22 - 48686*x^21 + 121619*x^20 - 306546*x^19 + 810012*x^18 - 2087415*x^17 + 5002572*x^16 - 11311375*x^15 + 24424402*x^14 - 49257771*x^13 + 88022499*x^12 - 134078913*x^11 + 172501038*x^10 - 188691174*x^9 + 176841252*x^8 - 141293241*x^7 + 95362353*x^6 - 55362204*x^5 + 28414476*x^4 - 12173571*x^3 + 3774762*x^2 - 708588*x + 59049, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^30 - x^29 + 12*x^28 - 45*x^27 + 210*x^26 - 744*x^25 + 2465*x^24 - 6965*x^23 + 19758*x^22 - 48686*x^21 + 121619*x^20 - 306546*x^19 + 810012*x^18 - 2087415*x^17 + 5002572*x^16 - 11311375*x^15 + 24424402*x^14 - 49257771*x^13 + 88022499*x^12 - 134078913*x^11 + 172501038*x^10 - 188691174*x^9 + 176841252*x^8 - 141293241*x^7 + 95362353*x^6 - 55362204*x^5 + 28414476*x^4 - 12173571*x^3 + 3774762*x^2 - 708588*x + 59049);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^30 - x^29 + 12*x^28 - 45*x^27 + 210*x^26 - 744*x^25 + 2465*x^24 - 6965*x^23 + 19758*x^22 - 48686*x^21 + 121619*x^20 - 306546*x^19 + 810012*x^18 - 2087415*x^17 + 5002572*x^16 - 11311375*x^15 + 24424402*x^14 - 49257771*x^13 + 88022499*x^12 - 134078913*x^11 + 172501038*x^10 - 188691174*x^9 + 176841252*x^8 - 141293241*x^7 + 95362353*x^6 - 55362204*x^5 + 28414476*x^4 - 12173571*x^3 + 3774762*x^2 - 708588*x + 59049);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$D_{30}$ (as 30T14):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 60
The 18 conjugacy class representatives for $D_{30}$
Character table for $D_{30}$

Intermediate fields

\(\Q(\sqrt{-3}) \), 3.1.3351.1, 5.1.11229201.1, 6.0.33687603.2, 10.0.378284865295203.1, 15.1.4744833691813716605070951.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 30 sibling: 30.2.25147520034238141665614212776801727735214210097595917.1
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $30$ R ${\href{/padicField/5.10.0.1}{10} }^{3}$ ${\href{/padicField/7.5.0.1}{5} }^{6}$ $30$ $15^{2}$ $30$ ${\href{/padicField/19.2.0.1}{2} }^{14}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ ${\href{/padicField/23.2.0.1}{2} }^{15}$ ${\href{/padicField/29.6.0.1}{6} }^{5}$ $15^{2}$ ${\href{/padicField/37.3.0.1}{3} }^{10}$ ${\href{/padicField/41.2.0.1}{2} }^{15}$ ${\href{/padicField/43.2.0.1}{2} }^{14}{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ ${\href{/padicField/47.2.0.1}{2} }^{15}$ ${\href{/padicField/53.2.0.1}{2} }^{15}$ $30$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(3\) Copy content Toggle raw display 3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
\(1117\) Copy content Toggle raw display $\Q_{1117}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{1117}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$

Artin representations

Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
* 1.1.1t1.a.a$1$ $1$ \(\Q\) $C_1$ $1$ $1$
1.1117.2t1.a.a$1$ $ 1117 $ \(\Q(\sqrt{1117}) \) $C_2$ (as 2T1) $1$ $1$
1.3351.2t1.a.a$1$ $ 3 \cdot 1117 $ \(\Q(\sqrt{-3351}) \) $C_2$ (as 2T1) $1$ $-1$
* 1.3.2t1.a.a$1$ $ 3 $ \(\Q(\sqrt{-3}) \) $C_2$ (as 2T1) $1$ $-1$
* 2.3351.6t3.b.a$2$ $ 3 \cdot 1117 $ 6.2.12543017517.1 $D_{6}$ (as 6T3) $1$ $0$
* 2.3351.3t2.a.a$2$ $ 3 \cdot 1117 $ 3.1.3351.1 $S_3$ (as 3T2) $1$ $0$
* 2.3351.5t2.a.b$2$ $ 3 \cdot 1117 $ 5.1.11229201.1 $D_{5}$ (as 5T2) $1$ $0$
* 2.3351.5t2.a.a$2$ $ 3 \cdot 1117 $ 5.1.11229201.1 $D_{5}$ (as 5T2) $1$ $0$
* 2.3351.10t3.a.a$2$ $ 3 \cdot 1117 $ 10.2.140848064844913917.1 $D_{10}$ (as 10T3) $1$ $0$
* 2.3351.10t3.a.b$2$ $ 3 \cdot 1117 $ 10.2.140848064844913917.1 $D_{10}$ (as 10T3) $1$ $0$
* 2.3351.15t2.a.b$2$ $ 3 \cdot 1117 $ 15.1.4744833691813716605070951.1 $D_{15}$ (as 15T2) $1$ $0$
* 2.3351.15t2.a.a$2$ $ 3 \cdot 1117 $ 15.1.4744833691813716605070951.1 $D_{15}$ (as 15T2) $1$ $0$
* 2.3351.15t2.a.d$2$ $ 3 \cdot 1117 $ 15.1.4744833691813716605070951.1 $D_{15}$ (as 15T2) $1$ $0$
* 2.3351.15t2.a.c$2$ $ 3 \cdot 1117 $ 15.1.4744833691813716605070951.1 $D_{15}$ (as 15T2) $1$ $0$
* 2.3351.30t14.b.b$2$ $ 3 \cdot 1117 $ 30.0.67540340288911750220987142641365428116063232133203.1 $D_{30}$ (as 30T14) $1$ $0$
* 2.3351.30t14.b.c$2$ $ 3 \cdot 1117 $ 30.0.67540340288911750220987142641365428116063232133203.1 $D_{30}$ (as 30T14) $1$ $0$
* 2.3351.30t14.b.d$2$ $ 3 \cdot 1117 $ 30.0.67540340288911750220987142641365428116063232133203.1 $D_{30}$ (as 30T14) $1$ $0$
* 2.3351.30t14.b.a$2$ $ 3 \cdot 1117 $ 30.0.67540340288911750220987142641365428116063232133203.1 $D_{30}$ (as 30T14) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.