Properties

Label 30.0.56851932639...9463.1
Degree $30$
Signature $[0, 15]$
Discriminant $-\,3^{40}\cdot 7^{15}\cdot 11^{24}$
Root discriminant $77.95$
Ramified primes $3, 7, 11$
Class number $423155$ (GRH)
Class group $[423155]$ (GRH)
Galois group $C_{30}$ (as 30T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2284044751, -5846344410, 12116563935, -17214632474, 20898921987, -20619001905, 17917235515, -13378531284, 8966269281, -5299560927, 2839183851, -1355130954, 592252406, -241637424, 102637572, -49060283, 25260000, -11598279, 3959403, -760743, 42693, -65485, 84639, -37983, 4777, 1935, -597, -111, 81, -15, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^30 - 15*x^29 + 81*x^28 - 111*x^27 - 597*x^26 + 1935*x^25 + 4777*x^24 - 37983*x^23 + 84639*x^22 - 65485*x^21 + 42693*x^20 - 760743*x^19 + 3959403*x^18 - 11598279*x^17 + 25260000*x^16 - 49060283*x^15 + 102637572*x^14 - 241637424*x^13 + 592252406*x^12 - 1355130954*x^11 + 2839183851*x^10 - 5299560927*x^9 + 8966269281*x^8 - 13378531284*x^7 + 17917235515*x^6 - 20619001905*x^5 + 20898921987*x^4 - 17214632474*x^3 + 12116563935*x^2 - 5846344410*x + 2284044751)
 
gp: K = bnfinit(x^30 - 15*x^29 + 81*x^28 - 111*x^27 - 597*x^26 + 1935*x^25 + 4777*x^24 - 37983*x^23 + 84639*x^22 - 65485*x^21 + 42693*x^20 - 760743*x^19 + 3959403*x^18 - 11598279*x^17 + 25260000*x^16 - 49060283*x^15 + 102637572*x^14 - 241637424*x^13 + 592252406*x^12 - 1355130954*x^11 + 2839183851*x^10 - 5299560927*x^9 + 8966269281*x^8 - 13378531284*x^7 + 17917235515*x^6 - 20619001905*x^5 + 20898921987*x^4 - 17214632474*x^3 + 12116563935*x^2 - 5846344410*x + 2284044751, 1)
 

Normalized defining polynomial

\( x^{30} - 15 x^{29} + 81 x^{28} - 111 x^{27} - 597 x^{26} + 1935 x^{25} + 4777 x^{24} - 37983 x^{23} + 84639 x^{22} - 65485 x^{21} + 42693 x^{20} - 760743 x^{19} + 3959403 x^{18} - 11598279 x^{17} + 25260000 x^{16} - 49060283 x^{15} + 102637572 x^{14} - 241637424 x^{13} + 592252406 x^{12} - 1355130954 x^{11} + 2839183851 x^{10} - 5299560927 x^{9} + 8966269281 x^{8} - 13378531284 x^{7} + 17917235515 x^{6} - 20619001905 x^{5} + 20898921987 x^{4} - 17214632474 x^{3} + 12116563935 x^{2} - 5846344410 x + 2284044751 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $30$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 15]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-568519326398404118019654805600981921999434432632975849463=-\,3^{40}\cdot 7^{15}\cdot 11^{24}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $77.95$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 7, 11$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(693=3^{2}\cdot 7\cdot 11\)
Dirichlet character group:    $\lbrace$$\chi_{693}(64,·)$, $\chi_{693}(1,·)$, $\chi_{693}(643,·)$, $\chi_{693}(454,·)$, $\chi_{693}(328,·)$, $\chi_{693}(265,·)$, $\chi_{693}(202,·)$, $\chi_{693}(652,·)$, $\chi_{693}(610,·)$, $\chi_{693}(526,·)$, $\chi_{693}(463,·)$, $\chi_{693}(400,·)$, $\chi_{693}(148,·)$, $\chi_{693}(664,·)$, $\chi_{693}(412,·)$, $\chi_{693}(223,·)$, $\chi_{693}(97,·)$, $\chi_{693}(34,·)$, $\chi_{693}(421,·)$, $\chi_{693}(295,·)$, $\chi_{693}(232,·)$, $\chi_{693}(169,·)$, $\chi_{693}(685,·)$, $\chi_{693}(559,·)$, $\chi_{693}(496,·)$, $\chi_{693}(433,·)$, $\chi_{693}(181,·)$, $\chi_{693}(631,·)$, $\chi_{693}(379,·)$, $\chi_{693}(190,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $\frac{1}{22103532267192199} a^{28} + \frac{9093939390438912}{22103532267192199} a^{27} + \frac{9298967655442911}{22103532267192199} a^{26} + \frac{10677951330824312}{22103532267192199} a^{25} - \frac{4388793086700469}{22103532267192199} a^{24} + \frac{8780201266215898}{22103532267192199} a^{23} - \frac{6201231632443689}{22103532267192199} a^{22} - \frac{6092189795940518}{22103532267192199} a^{21} + \frac{6225337655457757}{22103532267192199} a^{20} + \frac{5996907687927856}{22103532267192199} a^{19} + \frac{9632086152172915}{22103532267192199} a^{18} + \frac{8918796064949118}{22103532267192199} a^{17} - \frac{6800071157782612}{22103532267192199} a^{16} - \frac{5156627396402168}{22103532267192199} a^{15} + \frac{7853620376203680}{22103532267192199} a^{14} + \frac{3396795868543661}{22103532267192199} a^{13} + \frac{9934434816917593}{22103532267192199} a^{12} - \frac{313317778341577}{22103532267192199} a^{11} + \frac{1988877646618633}{22103532267192199} a^{10} - \frac{3568430615166155}{22103532267192199} a^{9} - \frac{10146891539597848}{22103532267192199} a^{8} + \frac{2087672598042201}{22103532267192199} a^{7} - \frac{8670033691160472}{22103532267192199} a^{6} + \frac{3534751893327399}{22103532267192199} a^{5} - \frac{6392795080404970}{22103532267192199} a^{4} - \frac{8024724885704933}{22103532267192199} a^{3} - \frac{7223775518741128}{22103532267192199} a^{2} - \frac{3083688008610202}{22103532267192199} a + \frac{59739729983747}{202784699699011}$, $\frac{1}{73645055342677282494504033153283337815365335431329770004773268437257803705501443776609574605486484812629510384009522986689} a^{29} - \frac{1010961171541369027109754962871341997782278283885739551207912333021883418481323255576558132601292345911321}{73645055342677282494504033153283337815365335431329770004773268437257803705501443776609574605486484812629510384009522986689} a^{28} - \frac{9153731771783476716287126717883564980297764912374685007912836730496338043606497499377452985913219258100242084532794261628}{73645055342677282494504033153283337815365335431329770004773268437257803705501443776609574605486484812629510384009522986689} a^{27} - \frac{30449601405351548587699320021135002244281622214845276821256956933677966434459765041930387925138932862570386414327683265286}{73645055342677282494504033153283337815365335431329770004773268437257803705501443776609574605486484812629510384009522986689} a^{26} - \frac{16570421740412435726805116985517772306206651899479828457747129477812432997688432994327014021420335024557069971375808711548}{73645055342677282494504033153283337815365335431329770004773268437257803705501443776609574605486484812629510384009522986689} a^{25} - \frac{6166843128202802171225848652976169762505776438964235146490052860635125249213924715154081194777050088816305021393794837330}{73645055342677282494504033153283337815365335431329770004773268437257803705501443776609574605486484812629510384009522986689} a^{24} - \frac{24339452895481819154369761411659206261538743563398505350391792275066930667035185035098968850589655360917044448172970679281}{73645055342677282494504033153283337815365335431329770004773268437257803705501443776609574605486484812629510384009522986689} a^{23} + \frac{26823844503202667355173166111111063811465082804420291373595882736299246231136039034090457272147774934810762761507001340262}{73645055342677282494504033153283337815365335431329770004773268437257803705501443776609574605486484812629510384009522986689} a^{22} - \frac{26441303331890452687277234765214136926501146992867070063491166117438698099552634435717392651646075526705164540241196866063}{73645055342677282494504033153283337815365335431329770004773268437257803705501443776609574605486484812629510384009522986689} a^{21} + \frac{14260048626916844799332933330676990921411432483577967222091420111198783665789633340136515742937969692575896159775818956981}{73645055342677282494504033153283337815365335431329770004773268437257803705501443776609574605486484812629510384009522986689} a^{20} - \frac{33881434955069114011076068837019013944786257730370943460319263066541504063150426432420370478515880426699200645808809057609}{73645055342677282494504033153283337815365335431329770004773268437257803705501443776609574605486484812629510384009522986689} a^{19} - \frac{3497733653303487550933566643140379441187881302107397884445777827408497318940886407660087842094271251631614364182570100763}{73645055342677282494504033153283337815365335431329770004773268437257803705501443776609574605486484812629510384009522986689} a^{18} - \frac{16585509736503057712184914672263760525270098877523904845404224782048559624754435881872323683998754331779603803718117177136}{73645055342677282494504033153283337815365335431329770004773268437257803705501443776609574605486484812629510384009522986689} a^{17} + \frac{25539310479460015327180425559563449686970000436806412789380640989903631389897048547661768584942655428548463903345767606166}{73645055342677282494504033153283337815365335431329770004773268437257803705501443776609574605486484812629510384009522986689} a^{16} + \frac{12142091974646984725955664293636435990156267533019827502863716618278525021909447753328508623788693497796904516060218184583}{73645055342677282494504033153283337815365335431329770004773268437257803705501443776609574605486484812629510384009522986689} a^{15} - \frac{21232025321508192216121714534315782423120474701375389634136510039127935319266046548029348747930869093965433395153329552557}{73645055342677282494504033153283337815365335431329770004773268437257803705501443776609574605486484812629510384009522986689} a^{14} + \frac{31866701836142156810717598208767153012916933717152482927479236984983484767039947701999825564252439839944715223493345046437}{73645055342677282494504033153283337815365335431329770004773268437257803705501443776609574605486484812629510384009522986689} a^{13} - \frac{36089864652676886731995263577424960195350961215183027378147189073049756200930902097507268143348541975988013673323523009186}{73645055342677282494504033153283337815365335431329770004773268437257803705501443776609574605486484812629510384009522986689} a^{12} + \frac{23391366869207163433322621840406415360365240563456969290544315106615988441865097599529326351637553118075998964320218169338}{73645055342677282494504033153283337815365335431329770004773268437257803705501443776609574605486484812629510384009522986689} a^{11} + \frac{24361548445930140856532989833972071052190955391567457916074486445284019097579286786118369413880206415195039361617289639778}{73645055342677282494504033153283337815365335431329770004773268437257803705501443776609574605486484812629510384009522986689} a^{10} + \frac{25245952385724903411941319719940747306144561183934307499793186837151493865920681430832006769361279339490824109635953059632}{73645055342677282494504033153283337815365335431329770004773268437257803705501443776609574605486484812629510384009522986689} a^{9} + \frac{26903676027816817954367220945235134810023770329580504522594034224173234958145261177815010145905777887885079999788987974398}{73645055342677282494504033153283337815365335431329770004773268437257803705501443776609574605486484812629510384009522986689} a^{8} - \frac{24299051009377792884192902021043333470285034923050705003087378034386953203658126141709473293876883487211737971646724859169}{73645055342677282494504033153283337815365335431329770004773268437257803705501443776609574605486484812629510384009522986689} a^{7} - \frac{568901015562585175664899793861059355347842070478287532986269338444076652479601474137768323658872240166173179056901891174}{73645055342677282494504033153283337815365335431329770004773268437257803705501443776609574605486484812629510384009522986689} a^{6} + \frac{9014024819914376435743431936626444985201657471958198425139467009001503370764067992203522207692278151956086105229640890647}{73645055342677282494504033153283337815365335431329770004773268437257803705501443776609574605486484812629510384009522986689} a^{5} + \frac{19639666862773242585282013767541933550907260771831224509422314442179922902420421895412344508016200307346902651488957276864}{73645055342677282494504033153283337815365335431329770004773268437257803705501443776609574605486484812629510384009522986689} a^{4} - \frac{163459168388742629014670211926759766492791578615206442152598857170591245832510170650215108449255630485775610499406939416}{827472531940194185331505990486329638374891409340783932637901892553458468601139817714714321409960503512691127910219359401} a^{3} + \frac{16619456884957902032014369597747132199857498756884621120020778503897958401418223483777381189219817567696565344411342117271}{73645055342677282494504033153283337815365335431329770004773268437257803705501443776609574605486484812629510384009522986689} a^{2} + \frac{32015123903000343636272955310671519785193184563036974623931969243581562417724646835841986715908273733211852693210690718458}{73645055342677282494504033153283337815365335431329770004773268437257803705501443776609574605486484812629510384009522986689} a + \frac{253914340696558603901544150618387421219519212752756278423454311863441813235220437966628356921699899687069832777396188644}{675642709565846628389945258287003099223535187443392385364892370984016547756893979601922702802628301033298260403757091621}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{423155}$, which has order $423155$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $14$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 15853905121.091976 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{30}$ (as 30T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 30
The 30 conjugacy class representatives for $C_{30}$
Character table for $C_{30}$ is not computed

Intermediate fields

\(\Q(\sqrt{-7}) \), \(\Q(\zeta_{9})^+\), \(\Q(\zeta_{11})^+\), 6.0.2250423.1, 10.0.3602729712967.1, 15.15.10943023107606534329121.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $15^{2}$ R $30$ R R $30$ ${\href{/LocalNumberField/17.10.0.1}{10} }^{3}$ ${\href{/LocalNumberField/19.10.0.1}{10} }^{3}$ ${\href{/LocalNumberField/23.3.0.1}{3} }^{10}$ $15^{2}$ $30$ ${\href{/LocalNumberField/37.5.0.1}{5} }^{6}$ $30$ ${\href{/LocalNumberField/43.3.0.1}{3} }^{10}$ $30$ ${\href{/LocalNumberField/53.5.0.1}{5} }^{6}$ $30$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
3Data not computed
7Data not computed
$11$11.15.12.1$x^{15} + 165 x^{10} + 5324 x^{5} + 323433$$5$$3$$12$$C_{15}$$[\ ]_{5}^{3}$
11.15.12.1$x^{15} + 165 x^{10} + 5324 x^{5} + 323433$$5$$3$$12$$C_{15}$$[\ ]_{5}^{3}$