Properties

Label 30.0.476...375.1
Degree $30$
Signature $[0, 15]$
Discriminant $-4.764\times 10^{54}$
Root discriminant \(66.47\)
Ramified primes $5,7$
Class number $9616$ (GRH)
Class group [2, 2, 2, 1202] (GRH)
Galois group $C_{30}$ (as 30T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^30 + 10*x^28 - 5*x^27 + 90*x^26 - 101*x^25 + 825*x^24 + 1800*x^23 + 7860*x^22 + 14795*x^21 + 61451*x^20 + 89825*x^19 + 460135*x^18 + 435185*x^17 + 861265*x^16 + 1091474*x^15 + 1745550*x^14 + 1796430*x^13 + 2950295*x^12 - 2539455*x^11 + 1973826*x^10 - 1313050*x^9 + 1136155*x^8 - 555375*x^7 + 727995*x^6 - 77851*x^5 + 8325*x^4 - 890*x^3 + 95*x^2 - 10*x + 1)
 
gp: K = bnfinit(y^30 + 10*y^28 - 5*y^27 + 90*y^26 - 101*y^25 + 825*y^24 + 1800*y^23 + 7860*y^22 + 14795*y^21 + 61451*y^20 + 89825*y^19 + 460135*y^18 + 435185*y^17 + 861265*y^16 + 1091474*y^15 + 1745550*y^14 + 1796430*y^13 + 2950295*y^12 - 2539455*y^11 + 1973826*y^10 - 1313050*y^9 + 1136155*y^8 - 555375*y^7 + 727995*y^6 - 77851*y^5 + 8325*y^4 - 890*y^3 + 95*y^2 - 10*y + 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^30 + 10*x^28 - 5*x^27 + 90*x^26 - 101*x^25 + 825*x^24 + 1800*x^23 + 7860*x^22 + 14795*x^21 + 61451*x^20 + 89825*x^19 + 460135*x^18 + 435185*x^17 + 861265*x^16 + 1091474*x^15 + 1745550*x^14 + 1796430*x^13 + 2950295*x^12 - 2539455*x^11 + 1973826*x^10 - 1313050*x^9 + 1136155*x^8 - 555375*x^7 + 727995*x^6 - 77851*x^5 + 8325*x^4 - 890*x^3 + 95*x^2 - 10*x + 1);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^30 + 10*x^28 - 5*x^27 + 90*x^26 - 101*x^25 + 825*x^24 + 1800*x^23 + 7860*x^22 + 14795*x^21 + 61451*x^20 + 89825*x^19 + 460135*x^18 + 435185*x^17 + 861265*x^16 + 1091474*x^15 + 1745550*x^14 + 1796430*x^13 + 2950295*x^12 - 2539455*x^11 + 1973826*x^10 - 1313050*x^9 + 1136155*x^8 - 555375*x^7 + 727995*x^6 - 77851*x^5 + 8325*x^4 - 890*x^3 + 95*x^2 - 10*x + 1)
 

\( x^{30} + 10 x^{28} - 5 x^{27} + 90 x^{26} - 101 x^{25} + 825 x^{24} + 1800 x^{23} + 7860 x^{22} + \cdots + 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $30$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 15]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-4764432829290274543179606325793429277837276458740234375\) \(\medspace = -\,5^{48}\cdot 7^{25}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(66.47\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $5^{8/5}7^{5/6}\approx 66.46612708676464$
Ramified primes:   \(5\), \(7\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-7}) \)
$\card{ \Gal(K/\Q) }$:  $30$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(175=5^{2}\cdot 7\)
Dirichlet character group:    $\lbrace$$\chi_{175}(1,·)$, $\chi_{175}(66,·)$, $\chi_{175}(131,·)$, $\chi_{175}(6,·)$, $\chi_{175}(71,·)$, $\chi_{175}(136,·)$, $\chi_{175}(11,·)$, $\chi_{175}(76,·)$, $\chi_{175}(141,·)$, $\chi_{175}(16,·)$, $\chi_{175}(81,·)$, $\chi_{175}(146,·)$, $\chi_{175}(86,·)$, $\chi_{175}(151,·)$, $\chi_{175}(26,·)$, $\chi_{175}(156,·)$, $\chi_{175}(31,·)$, $\chi_{175}(96,·)$, $\chi_{175}(36,·)$, $\chi_{175}(101,·)$, $\chi_{175}(166,·)$, $\chi_{175}(41,·)$, $\chi_{175}(106,·)$, $\chi_{175}(171,·)$, $\chi_{175}(46,·)$, $\chi_{175}(111,·)$, $\chi_{175}(51,·)$, $\chi_{175}(116,·)$, $\chi_{175}(121,·)$, $\chi_{175}(61,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{16384}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{43}a^{19}+\frac{12}{43}a^{18}+\frac{19}{43}a^{17}+\frac{18}{43}a^{16}-\frac{9}{43}a^{15}+\frac{7}{43}a^{14}+\frac{5}{43}a^{13}+\frac{9}{43}a^{12}-\frac{1}{43}a^{11}-\frac{19}{43}a^{10}-\frac{17}{43}a^{9}+\frac{21}{43}a^{8}+\frac{12}{43}a^{7}+\frac{13}{43}a^{6}-\frac{4}{43}a^{5}+\frac{4}{43}a^{4}-\frac{11}{43}a^{3}+\frac{13}{43}a^{2}-\frac{17}{43}a+\frac{20}{43}$, $\frac{1}{43}a^{20}+\frac{4}{43}a^{18}+\frac{5}{43}a^{17}-\frac{10}{43}a^{16}-\frac{14}{43}a^{15}+\frac{7}{43}a^{14}-\frac{8}{43}a^{13}+\frac{20}{43}a^{12}-\frac{7}{43}a^{11}-\frac{4}{43}a^{10}+\frac{10}{43}a^{9}+\frac{18}{43}a^{8}-\frac{2}{43}a^{7}+\frac{12}{43}a^{6}+\frac{9}{43}a^{5}-\frac{16}{43}a^{4}+\frac{16}{43}a^{3}-\frac{1}{43}a^{2}+\frac{9}{43}a+\frac{18}{43}$, $\frac{1}{43}a^{21}+\frac{7}{43}a^{14}+\frac{7}{43}a^{7}+\frac{6}{43}$, $\frac{1}{43}a^{22}+\frac{7}{43}a^{15}+\frac{7}{43}a^{8}+\frac{6}{43}a$, $\frac{1}{43}a^{23}+\frac{7}{43}a^{16}+\frac{7}{43}a^{9}+\frac{6}{43}a^{2}$, $\frac{1}{301}a^{24}-\frac{3}{301}a^{23}+\frac{3}{301}a^{22}+\frac{1}{7}a^{18}+\frac{1}{43}a^{17}+\frac{22}{301}a^{16}+\frac{107}{301}a^{15}+\frac{1}{7}a^{12}+\frac{1}{43}a^{10}-\frac{107}{301}a^{9}-\frac{108}{301}a^{8}+\frac{1}{7}a^{6}+\frac{7}{43}a^{3}+\frac{68}{301}a^{2}+\frac{104}{301}a+\frac{1}{7}$, $\frac{1}{36\!\cdots\!57}a^{25}+\frac{30\!\cdots\!63}{36\!\cdots\!57}a^{24}+\frac{39\!\cdots\!20}{36\!\cdots\!57}a^{23}+\frac{30\!\cdots\!25}{36\!\cdots\!57}a^{22}+\frac{53\!\cdots\!97}{52\!\cdots\!51}a^{21}-\frac{161154634934220}{74\!\cdots\!93}a^{20}-\frac{70\!\cdots\!00}{36\!\cdots\!57}a^{19}-\frac{76\!\cdots\!86}{36\!\cdots\!57}a^{18}+\frac{12\!\cdots\!69}{36\!\cdots\!57}a^{17}-\frac{64\!\cdots\!88}{36\!\cdots\!57}a^{16}-\frac{17\!\cdots\!85}{36\!\cdots\!57}a^{15}-\frac{23\!\cdots\!89}{52\!\cdots\!51}a^{14}-\frac{14\!\cdots\!08}{36\!\cdots\!57}a^{13}-\frac{10\!\cdots\!36}{36\!\cdots\!57}a^{12}-\frac{13\!\cdots\!75}{52\!\cdots\!51}a^{11}+\frac{17\!\cdots\!80}{36\!\cdots\!57}a^{10}-\frac{15\!\cdots\!57}{36\!\cdots\!57}a^{9}+\frac{17\!\cdots\!80}{36\!\cdots\!57}a^{8}-\frac{14\!\cdots\!28}{36\!\cdots\!57}a^{7}+\frac{95\!\cdots\!03}{36\!\cdots\!57}a^{6}-\frac{21\!\cdots\!70}{52\!\cdots\!51}a^{5}-\frac{433951721474767}{17\!\cdots\!51}a^{4}-\frac{76\!\cdots\!63}{36\!\cdots\!57}a^{3}+\frac{95\!\cdots\!63}{36\!\cdots\!57}a^{2}-\frac{33\!\cdots\!59}{36\!\cdots\!57}a-\frac{12\!\cdots\!93}{36\!\cdots\!57}$, $\frac{1}{15\!\cdots\!51}a^{26}+\frac{12}{15\!\cdots\!51}a^{25}+\frac{14\!\cdots\!34}{15\!\cdots\!51}a^{24}+\frac{25\!\cdots\!62}{15\!\cdots\!51}a^{23}+\frac{14\!\cdots\!70}{15\!\cdots\!51}a^{22}+\frac{25\!\cdots\!47}{22\!\cdots\!93}a^{21}+\frac{69\!\cdots\!67}{15\!\cdots\!51}a^{20}+\frac{42\!\cdots\!54}{15\!\cdots\!51}a^{19}-\frac{43\!\cdots\!95}{15\!\cdots\!51}a^{18}-\frac{15\!\cdots\!48}{15\!\cdots\!51}a^{17}-\frac{26\!\cdots\!72}{15\!\cdots\!51}a^{16}+\frac{60\!\cdots\!88}{15\!\cdots\!51}a^{15}-\frac{67\!\cdots\!86}{15\!\cdots\!51}a^{14}+\frac{67\!\cdots\!63}{15\!\cdots\!51}a^{13}+\frac{62\!\cdots\!04}{15\!\cdots\!51}a^{12}+\frac{60\!\cdots\!53}{15\!\cdots\!51}a^{11}+\frac{10\!\cdots\!20}{15\!\cdots\!51}a^{10}-\frac{76\!\cdots\!04}{22\!\cdots\!93}a^{9}+\frac{54\!\cdots\!38}{15\!\cdots\!51}a^{8}+\frac{99\!\cdots\!94}{15\!\cdots\!51}a^{7}-\frac{59\!\cdots\!34}{15\!\cdots\!51}a^{6}-\frac{94\!\cdots\!58}{22\!\cdots\!93}a^{5}-\frac{65\!\cdots\!36}{15\!\cdots\!51}a^{4}+\frac{18\!\cdots\!97}{15\!\cdots\!51}a^{3}-\frac{59\!\cdots\!76}{15\!\cdots\!51}a^{2}-\frac{52\!\cdots\!62}{15\!\cdots\!51}a+\frac{70\!\cdots\!25}{15\!\cdots\!51}$, $\frac{1}{15\!\cdots\!51}a^{27}+\frac{4}{15\!\cdots\!51}a^{25}+\frac{14\!\cdots\!15}{22\!\cdots\!93}a^{24}+\frac{14\!\cdots\!20}{15\!\cdots\!51}a^{23}+\frac{14\!\cdots\!47}{22\!\cdots\!93}a^{22}-\frac{11\!\cdots\!93}{15\!\cdots\!51}a^{21}-\frac{17\!\cdots\!39}{15\!\cdots\!51}a^{20}-\frac{17\!\cdots\!24}{15\!\cdots\!51}a^{19}-\frac{61\!\cdots\!54}{15\!\cdots\!51}a^{18}+\frac{11\!\cdots\!26}{15\!\cdots\!51}a^{17}+\frac{16\!\cdots\!28}{15\!\cdots\!51}a^{16}-\frac{29\!\cdots\!44}{15\!\cdots\!51}a^{15}-\frac{81\!\cdots\!86}{15\!\cdots\!51}a^{14}+\frac{32\!\cdots\!47}{15\!\cdots\!51}a^{13}-\frac{67\!\cdots\!05}{15\!\cdots\!51}a^{12}+\frac{77\!\cdots\!98}{15\!\cdots\!51}a^{11}+\frac{22\!\cdots\!27}{15\!\cdots\!51}a^{10}-\frac{41\!\cdots\!17}{15\!\cdots\!51}a^{9}-\frac{40\!\cdots\!19}{15\!\cdots\!51}a^{8}+\frac{27\!\cdots\!32}{15\!\cdots\!51}a^{7}-\frac{84\!\cdots\!98}{22\!\cdots\!93}a^{6}-\frac{39\!\cdots\!07}{15\!\cdots\!51}a^{5}+\frac{79\!\cdots\!28}{22\!\cdots\!93}a^{4}-\frac{56\!\cdots\!88}{15\!\cdots\!51}a^{3}+\frac{49\!\cdots\!09}{22\!\cdots\!93}a^{2}+\frac{49\!\cdots\!51}{15\!\cdots\!51}a-\frac{22\!\cdots\!01}{32\!\cdots\!99}$, $\frac{1}{15\!\cdots\!51}a^{28}-\frac{41\!\cdots\!18}{15\!\cdots\!51}a^{21}+\frac{21\!\cdots\!79}{15\!\cdots\!51}a^{14}-\frac{51\!\cdots\!16}{15\!\cdots\!51}a^{7}-\frac{82\!\cdots\!31}{15\!\cdots\!51}$, $\frac{1}{15\!\cdots\!51}a^{29}-\frac{41\!\cdots\!18}{15\!\cdots\!51}a^{22}+\frac{21\!\cdots\!79}{15\!\cdots\!51}a^{15}-\frac{51\!\cdots\!16}{15\!\cdots\!51}a^{8}-\frac{82\!\cdots\!31}{15\!\cdots\!51}a$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{2}\times C_{2}\times C_{2}\times C_{1202}$, which has order $9616$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $14$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -\frac{2412612091064194800}{22560704784664886693} a^{29} - \frac{24126123104910695585}{22560704784664886693} a^{27} + \frac{12063060455320974000}{22560704784664886693} a^{26} - \frac{217135088195777532000}{22560704784664886693} a^{25} + \frac{243673821197483674800}{22560704784664886693} a^{24} - \frac{1990404975127960710000}{22560704784664886693} a^{23} - \frac{4342701763915550640000}{22560704784664886693} a^{22} - \frac{18963131035764571128000}{22560704784664886693} a^{21} - \frac{35694602951979507415218}{22560704784664886693} a^{20} - \frac{148257425607985834654800}{22560704784664886693} a^{19} - \frac{216712881079841297910000}{22560704784664886693} a^{18} - \frac{1110127264521823274298000}{22560704784664886693} a^{17} - \frac{1049932592849771614038000}{22560704784664886693} a^{16} - \frac{2077898352610403734422000}{22560704784664886693} a^{15} - \frac{2633303369482200955135200}{22560704784664886693} a^{14} - \frac{4211329192401012206918270}{22560704784664886693} a^{13} - \frac{4334088738750451464564000}{22560704784664886693} a^{12} - \frac{7117917389206238597466000}{22560704784664886693} a^{11} + \frac{6126719837713424805834000}{22560704784664886693} a^{10} - \frac{4762076473256875365304800}{22560704784664886693} a^{9} + \frac{3167880306171840982140000}{22560704784664886693} a^{8} - \frac{2741101290323040242994000}{22560704784664886693} a^{7} + \frac{1339773657277972324101055}{22560704784664886693} a^{6} - \frac{1756369539234278493426000}{22560704784664886693} a^{5} + \frac{187824263901438629374800}{22560704784664886693} a^{4} - \frac{20084995658109421710000}{22560704784664886693} a^{3} + \frac{2147224761047133372000}{22560704784664886693} a^{2} - \frac{229198148651098506000}{22560704784664886693} a + \frac{24126120910641948000}{22560704784664886693} \)  (order $14$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{25\!\cdots\!00}{22\!\cdots\!93}a^{29}+\frac{38\!\cdots\!10}{32\!\cdots\!99}a^{28}+\frac{25\!\cdots\!50}{22\!\cdots\!93}a^{27}-\frac{23\!\cdots\!15}{52\!\cdots\!51}a^{26}+\frac{22\!\cdots\!50}{22\!\cdots\!93}a^{25}-\frac{23\!\cdots\!00}{22\!\cdots\!93}a^{24}+\frac{20\!\cdots\!55}{22\!\cdots\!93}a^{23}+\frac{68\!\cdots\!50}{32\!\cdots\!99}a^{22}+\frac{20\!\cdots\!15}{22\!\cdots\!93}a^{21}+\frac{57\!\cdots\!25}{32\!\cdots\!99}a^{20}+\frac{16\!\cdots\!75}{22\!\cdots\!93}a^{19}+\frac{35\!\cdots\!60}{32\!\cdots\!99}a^{18}+\frac{11\!\cdots\!70}{22\!\cdots\!93}a^{17}+\frac{17\!\cdots\!55}{32\!\cdots\!99}a^{16}+\frac{23\!\cdots\!75}{22\!\cdots\!93}a^{15}+\frac{43\!\cdots\!75}{32\!\cdots\!99}a^{14}+\frac{47\!\cdots\!05}{22\!\cdots\!93}a^{13}+\frac{50\!\cdots\!90}{22\!\cdots\!93}a^{12}+\frac{80\!\cdots\!90}{22\!\cdots\!93}a^{11}-\frac{56\!\cdots\!43}{22\!\cdots\!93}a^{10}+\frac{44\!\cdots\!50}{22\!\cdots\!93}a^{9}-\frac{28\!\cdots\!05}{22\!\cdots\!93}a^{8}+\frac{25\!\cdots\!75}{22\!\cdots\!93}a^{7}-\frac{11\!\cdots\!40}{22\!\cdots\!93}a^{6}+\frac{17\!\cdots\!18}{22\!\cdots\!93}a^{5}-\frac{13\!\cdots\!75}{22\!\cdots\!93}a^{4}+\frac{19\!\cdots\!70}{22\!\cdots\!93}a^{3}-\frac{14\!\cdots\!75}{22\!\cdots\!93}a^{2}+\frac{22\!\cdots\!95}{32\!\cdots\!99}a-\frac{23\!\cdots\!68}{22\!\cdots\!93}$, $\frac{25\!\cdots\!50}{22\!\cdots\!93}a^{29}+\frac{25\!\cdots\!95}{22\!\cdots\!93}a^{28}+\frac{25\!\cdots\!00}{22\!\cdots\!93}a^{27}-\frac{10\!\cdots\!80}{22\!\cdots\!93}a^{26}+\frac{23\!\cdots\!25}{22\!\cdots\!93}a^{25}-\frac{23\!\cdots\!00}{22\!\cdots\!93}a^{24}+\frac{21\!\cdots\!55}{22\!\cdots\!93}a^{23}+\frac{48\!\cdots\!75}{22\!\cdots\!93}a^{22}+\frac{20\!\cdots\!00}{22\!\cdots\!93}a^{21}+\frac{40\!\cdots\!50}{22\!\cdots\!93}a^{20}+\frac{23\!\cdots\!00}{32\!\cdots\!99}a^{19}+\frac{24\!\cdots\!95}{22\!\cdots\!93}a^{18}+\frac{12\!\cdots\!25}{22\!\cdots\!93}a^{17}+\frac{12\!\cdots\!75}{22\!\cdots\!93}a^{16}+\frac{23\!\cdots\!25}{22\!\cdots\!93}a^{15}+\frac{30\!\cdots\!75}{22\!\cdots\!93}a^{14}+\frac{47\!\cdots\!30}{22\!\cdots\!93}a^{13}+\frac{50\!\cdots\!65}{22\!\cdots\!93}a^{12}+\frac{11\!\cdots\!00}{32\!\cdots\!99}a^{11}-\frac{57\!\cdots\!25}{22\!\cdots\!93}a^{10}+\frac{44\!\cdots\!75}{22\!\cdots\!93}a^{9}-\frac{28\!\cdots\!30}{22\!\cdots\!93}a^{8}+\frac{37\!\cdots\!00}{32\!\cdots\!99}a^{7}-\frac{16\!\cdots\!75}{32\!\cdots\!99}a^{6}+\frac{17\!\cdots\!93}{22\!\cdots\!93}a^{5}-\frac{13\!\cdots\!25}{22\!\cdots\!93}a^{4}+\frac{13\!\cdots\!05}{22\!\cdots\!93}a^{3}-\frac{14\!\cdots\!25}{22\!\cdots\!93}a^{2}+\frac{15\!\cdots\!00}{22\!\cdots\!93}a-\frac{23\!\cdots\!68}{22\!\cdots\!93}$, $\frac{69\!\cdots\!20}{15\!\cdots\!51}a^{29}-\frac{39\!\cdots\!39}{15\!\cdots\!51}a^{28}+\frac{69\!\cdots\!50}{15\!\cdots\!51}a^{27}-\frac{73\!\cdots\!88}{15\!\cdots\!51}a^{26}+\frac{64\!\cdots\!83}{15\!\cdots\!51}a^{25}-\frac{10\!\cdots\!23}{15\!\cdots\!51}a^{24}+\frac{61\!\cdots\!60}{15\!\cdots\!51}a^{23}+\frac{93\!\cdots\!65}{15\!\cdots\!51}a^{22}+\frac{68\!\cdots\!93}{22\!\cdots\!93}a^{21}+\frac{16\!\cdots\!67}{36\!\cdots\!57}a^{20}+\frac{37\!\cdots\!88}{15\!\cdots\!51}a^{19}+\frac{38\!\cdots\!19}{15\!\cdots\!51}a^{18}+\frac{28\!\cdots\!25}{15\!\cdots\!51}a^{17}+\frac{12\!\cdots\!82}{15\!\cdots\!51}a^{16}+\frac{43\!\cdots\!14}{15\!\cdots\!51}a^{15}+\frac{43\!\cdots\!87}{15\!\cdots\!51}a^{14}+\frac{79\!\cdots\!69}{15\!\cdots\!51}a^{13}+\frac{58\!\cdots\!64}{15\!\cdots\!51}a^{12}+\frac{13\!\cdots\!45}{15\!\cdots\!51}a^{11}-\frac{29\!\cdots\!18}{15\!\cdots\!51}a^{10}+\frac{23\!\cdots\!58}{15\!\cdots\!51}a^{9}-\frac{16\!\cdots\!39}{15\!\cdots\!51}a^{8}+\frac{13\!\cdots\!26}{15\!\cdots\!51}a^{7}-\frac{82\!\cdots\!71}{15\!\cdots\!51}a^{6}+\frac{72\!\cdots\!90}{15\!\cdots\!51}a^{5}-\frac{33\!\cdots\!03}{15\!\cdots\!51}a^{4}+\frac{35\!\cdots\!46}{15\!\cdots\!51}a^{3}-\frac{88\!\cdots\!86}{15\!\cdots\!51}a^{2}+\frac{16\!\cdots\!03}{22\!\cdots\!93}a+\frac{52\!\cdots\!48}{22\!\cdots\!93}$, $\frac{14\!\cdots\!92}{15\!\cdots\!51}a^{29}-\frac{49\!\cdots\!96}{15\!\cdots\!51}a^{28}+\frac{14\!\cdots\!79}{15\!\cdots\!51}a^{27}-\frac{28\!\cdots\!30}{36\!\cdots\!57}a^{26}+\frac{18\!\cdots\!57}{22\!\cdots\!93}a^{25}-\frac{19\!\cdots\!90}{15\!\cdots\!51}a^{24}+\frac{12\!\cdots\!80}{15\!\cdots\!51}a^{23}+\frac{21\!\cdots\!63}{15\!\cdots\!51}a^{22}+\frac{10\!\cdots\!37}{15\!\cdots\!51}a^{21}+\frac{17\!\cdots\!50}{15\!\cdots\!51}a^{20}+\frac{80\!\cdots\!60}{15\!\cdots\!51}a^{19}+\frac{98\!\cdots\!69}{15\!\cdots\!51}a^{18}+\frac{87\!\cdots\!42}{22\!\cdots\!93}a^{17}+\frac{39\!\cdots\!95}{15\!\cdots\!51}a^{16}+\frac{10\!\cdots\!61}{15\!\cdots\!51}a^{15}+\frac{11\!\cdots\!43}{15\!\cdots\!51}a^{14}+\frac{19\!\cdots\!80}{15\!\cdots\!51}a^{13}+\frac{23\!\cdots\!18}{22\!\cdots\!93}a^{12}+\frac{46\!\cdots\!56}{22\!\cdots\!93}a^{11}-\frac{52\!\cdots\!06}{15\!\cdots\!51}a^{10}+\frac{39\!\cdots\!75}{15\!\cdots\!51}a^{9}-\frac{27\!\cdots\!91}{15\!\cdots\!51}a^{8}+\frac{21\!\cdots\!42}{15\!\cdots\!51}a^{7}-\frac{12\!\cdots\!05}{15\!\cdots\!51}a^{6}+\frac{12\!\cdots\!46}{15\!\cdots\!51}a^{5}-\frac{44\!\cdots\!58}{15\!\cdots\!51}a^{4}+\frac{20\!\cdots\!40}{22\!\cdots\!93}a^{3}-\frac{16\!\cdots\!54}{15\!\cdots\!51}a^{2}+\frac{39\!\cdots\!27}{15\!\cdots\!51}a-\frac{59\!\cdots\!38}{22\!\cdots\!93}$, $\frac{49\!\cdots\!97}{15\!\cdots\!51}a^{29}-\frac{27\!\cdots\!56}{15\!\cdots\!51}a^{28}+\frac{49\!\cdots\!16}{15\!\cdots\!51}a^{27}-\frac{24\!\cdots\!19}{15\!\cdots\!51}a^{26}+\frac{63\!\cdots\!46}{22\!\cdots\!93}a^{25}-\frac{50\!\cdots\!35}{15\!\cdots\!51}a^{24}+\frac{40\!\cdots\!66}{15\!\cdots\!51}a^{23}+\frac{88\!\cdots\!00}{15\!\cdots\!51}a^{22}+\frac{38\!\cdots\!31}{15\!\cdots\!51}a^{21}+\frac{72\!\cdots\!96}{15\!\cdots\!51}a^{20}+\frac{30\!\cdots\!22}{15\!\cdots\!51}a^{19}+\frac{44\!\cdots\!70}{15\!\cdots\!51}a^{18}+\frac{22\!\cdots\!81}{15\!\cdots\!51}a^{17}+\frac{21\!\cdots\!44}{15\!\cdots\!51}a^{16}+\frac{42\!\cdots\!73}{15\!\cdots\!51}a^{15}+\frac{76\!\cdots\!51}{22\!\cdots\!93}a^{14}+\frac{12\!\cdots\!75}{22\!\cdots\!93}a^{13}+\frac{87\!\cdots\!50}{15\!\cdots\!51}a^{12}+\frac{14\!\cdots\!29}{15\!\cdots\!51}a^{11}-\frac{12\!\cdots\!99}{15\!\cdots\!51}a^{10}+\frac{96\!\cdots\!78}{15\!\cdots\!51}a^{9}-\frac{63\!\cdots\!80}{15\!\cdots\!51}a^{8}+\frac{55\!\cdots\!82}{15\!\cdots\!51}a^{7}-\frac{27\!\cdots\!80}{15\!\cdots\!51}a^{6}+\frac{35\!\cdots\!32}{15\!\cdots\!51}a^{5}-\frac{37\!\cdots\!67}{15\!\cdots\!51}a^{4}+\frac{67\!\cdots\!90}{32\!\cdots\!99}a^{3}-\frac{66\!\cdots\!27}{15\!\cdots\!51}a^{2}+\frac{29\!\cdots\!85}{22\!\cdots\!93}a-\frac{75\!\cdots\!55}{15\!\cdots\!51}$, $\frac{64\!\cdots\!01}{15\!\cdots\!51}a^{29}+\frac{14\!\cdots\!14}{15\!\cdots\!51}a^{28}+\frac{66\!\cdots\!93}{15\!\cdots\!51}a^{27}+\frac{11\!\cdots\!58}{15\!\cdots\!51}a^{26}+\frac{52\!\cdots\!43}{15\!\cdots\!51}a^{25}+\frac{15\!\cdots\!13}{36\!\cdots\!57}a^{24}+\frac{40\!\cdots\!26}{15\!\cdots\!51}a^{23}+\frac{33\!\cdots\!55}{22\!\cdots\!93}a^{22}+\frac{11\!\cdots\!40}{22\!\cdots\!93}a^{21}+\frac{21\!\cdots\!59}{15\!\cdots\!51}a^{20}+\frac{62\!\cdots\!65}{15\!\cdots\!51}a^{19}+\frac{15\!\cdots\!39}{15\!\cdots\!51}a^{18}+\frac{43\!\cdots\!95}{15\!\cdots\!51}a^{17}+\frac{96\!\cdots\!31}{15\!\cdots\!51}a^{16}+\frac{12\!\cdots\!04}{15\!\cdots\!51}a^{15}+\frac{20\!\cdots\!59}{15\!\cdots\!51}a^{14}+\frac{40\!\cdots\!50}{22\!\cdots\!93}a^{13}+\frac{38\!\cdots\!37}{15\!\cdots\!51}a^{12}+\frac{48\!\cdots\!85}{15\!\cdots\!51}a^{11}+\frac{29\!\cdots\!01}{15\!\cdots\!51}a^{10}-\frac{19\!\cdots\!14}{15\!\cdots\!51}a^{9}+\frac{14\!\cdots\!34}{15\!\cdots\!51}a^{8}-\frac{77\!\cdots\!20}{15\!\cdots\!51}a^{7}+\frac{10\!\cdots\!03}{15\!\cdots\!51}a^{6}-\frac{10\!\cdots\!69}{15\!\cdots\!51}a^{5}+\frac{88\!\cdots\!04}{15\!\cdots\!51}a^{4}+\frac{34\!\cdots\!56}{15\!\cdots\!51}a^{3}-\frac{15\!\cdots\!35}{15\!\cdots\!51}a^{2}+\frac{39\!\cdots\!00}{15\!\cdots\!51}a+\frac{11\!\cdots\!22}{15\!\cdots\!51}$, $\frac{19\!\cdots\!35}{15\!\cdots\!51}a^{29}+\frac{11\!\cdots\!18}{15\!\cdots\!51}a^{28}+\frac{19\!\cdots\!04}{15\!\cdots\!51}a^{27}-\frac{12\!\cdots\!60}{22\!\cdots\!93}a^{26}+\frac{17\!\cdots\!45}{15\!\cdots\!51}a^{25}-\frac{18\!\cdots\!83}{15\!\cdots\!51}a^{24}+\frac{15\!\cdots\!70}{15\!\cdots\!51}a^{23}+\frac{36\!\cdots\!66}{15\!\cdots\!51}a^{22}+\frac{31\!\cdots\!73}{32\!\cdots\!99}a^{21}+\frac{29\!\cdots\!01}{15\!\cdots\!51}a^{20}+\frac{12\!\cdots\!50}{15\!\cdots\!51}a^{19}+\frac{18\!\cdots\!34}{15\!\cdots\!51}a^{18}+\frac{12\!\cdots\!90}{22\!\cdots\!93}a^{17}+\frac{90\!\cdots\!05}{15\!\cdots\!51}a^{16}+\frac{17\!\cdots\!14}{15\!\cdots\!51}a^{15}+\frac{22\!\cdots\!86}{15\!\cdots\!51}a^{14}+\frac{35\!\cdots\!90}{15\!\cdots\!51}a^{13}+\frac{37\!\cdots\!56}{15\!\cdots\!51}a^{12}+\frac{59\!\cdots\!05}{15\!\cdots\!51}a^{11}-\frac{45\!\cdots\!80}{15\!\cdots\!51}a^{10}+\frac{72\!\cdots\!35}{32\!\cdots\!99}a^{9}-\frac{23\!\cdots\!35}{15\!\cdots\!51}a^{8}+\frac{20\!\cdots\!57}{15\!\cdots\!51}a^{7}-\frac{94\!\cdots\!29}{15\!\cdots\!51}a^{6}+\frac{13\!\cdots\!45}{15\!\cdots\!51}a^{5}-\frac{94\!\cdots\!34}{22\!\cdots\!93}a^{4}+\frac{70\!\cdots\!66}{15\!\cdots\!51}a^{3}-\frac{16\!\cdots\!69}{15\!\cdots\!51}a^{2}+\frac{12\!\cdots\!89}{15\!\cdots\!51}a-\frac{10\!\cdots\!13}{15\!\cdots\!51}$, $\frac{29\!\cdots\!09}{15\!\cdots\!51}a^{29}-\frac{20\!\cdots\!20}{15\!\cdots\!51}a^{28}+\frac{29\!\cdots\!77}{15\!\cdots\!51}a^{27}-\frac{14\!\cdots\!02}{15\!\cdots\!51}a^{26}+\frac{26\!\cdots\!86}{15\!\cdots\!51}a^{25}-\frac{29\!\cdots\!50}{15\!\cdots\!51}a^{24}+\frac{24\!\cdots\!80}{15\!\cdots\!51}a^{23}+\frac{52\!\cdots\!45}{15\!\cdots\!51}a^{22}+\frac{23\!\cdots\!62}{15\!\cdots\!51}a^{21}+\frac{62\!\cdots\!19}{22\!\cdots\!93}a^{20}+\frac{18\!\cdots\!84}{15\!\cdots\!51}a^{19}+\frac{26\!\cdots\!60}{15\!\cdots\!51}a^{18}+\frac{13\!\cdots\!72}{15\!\cdots\!51}a^{17}+\frac{12\!\cdots\!93}{15\!\cdots\!51}a^{16}+\frac{25\!\cdots\!87}{15\!\cdots\!51}a^{15}+\frac{31\!\cdots\!96}{15\!\cdots\!51}a^{14}+\frac{50\!\cdots\!41}{15\!\cdots\!51}a^{13}+\frac{52\!\cdots\!90}{15\!\cdots\!51}a^{12}+\frac{86\!\cdots\!52}{15\!\cdots\!51}a^{11}-\frac{76\!\cdots\!17}{15\!\cdots\!51}a^{10}+\frac{82\!\cdots\!07}{22\!\cdots\!93}a^{9}-\frac{38\!\cdots\!00}{15\!\cdots\!51}a^{8}+\frac{33\!\cdots\!60}{15\!\cdots\!51}a^{7}-\frac{23\!\cdots\!35}{22\!\cdots\!93}a^{6}+\frac{21\!\cdots\!56}{15\!\cdots\!51}a^{5}-\frac{22\!\cdots\!44}{15\!\cdots\!51}a^{4}+\frac{19\!\cdots\!66}{15\!\cdots\!51}a^{3}-\frac{28\!\cdots\!60}{36\!\cdots\!57}a^{2}+\frac{40\!\cdots\!36}{15\!\cdots\!51}a-\frac{13\!\cdots\!15}{15\!\cdots\!51}$, $\frac{18\!\cdots\!36}{15\!\cdots\!51}a^{29}-\frac{30\!\cdots\!60}{22\!\cdots\!93}a^{28}+\frac{18\!\cdots\!64}{15\!\cdots\!51}a^{27}-\frac{11\!\cdots\!29}{15\!\cdots\!51}a^{26}+\frac{16\!\cdots\!91}{15\!\cdots\!51}a^{25}-\frac{20\!\cdots\!36}{15\!\cdots\!51}a^{24}+\frac{15\!\cdots\!00}{15\!\cdots\!51}a^{23}+\frac{31\!\cdots\!15}{15\!\cdots\!51}a^{22}+\frac{14\!\cdots\!59}{15\!\cdots\!51}a^{21}+\frac{25\!\cdots\!78}{15\!\cdots\!51}a^{20}+\frac{10\!\cdots\!36}{15\!\cdots\!51}a^{19}+\frac{15\!\cdots\!25}{15\!\cdots\!51}a^{18}+\frac{82\!\cdots\!85}{15\!\cdots\!51}a^{17}+\frac{69\!\cdots\!35}{15\!\cdots\!51}a^{16}+\frac{14\!\cdots\!16}{15\!\cdots\!51}a^{15}+\frac{18\!\cdots\!24}{15\!\cdots\!51}a^{14}+\frac{29\!\cdots\!07}{15\!\cdots\!51}a^{13}+\frac{29\!\cdots\!05}{15\!\cdots\!51}a^{12}+\frac{50\!\cdots\!70}{15\!\cdots\!51}a^{11}-\frac{53\!\cdots\!80}{15\!\cdots\!51}a^{10}+\frac{41\!\cdots\!36}{15\!\cdots\!51}a^{9}-\frac{27\!\cdots\!45}{15\!\cdots\!51}a^{8}+\frac{54\!\cdots\!80}{36\!\cdots\!57}a^{7}-\frac{12\!\cdots\!59}{15\!\cdots\!51}a^{6}+\frac{14\!\cdots\!20}{15\!\cdots\!51}a^{5}-\frac{28\!\cdots\!86}{15\!\cdots\!51}a^{4}+\frac{17\!\cdots\!75}{15\!\cdots\!51}a^{3}-\frac{18\!\cdots\!90}{15\!\cdots\!51}a^{2}+\frac{35\!\cdots\!75}{15\!\cdots\!51}a-\frac{19\!\cdots\!35}{15\!\cdots\!51}$, $\frac{79\!\cdots\!60}{15\!\cdots\!51}a^{29}+\frac{21\!\cdots\!34}{22\!\cdots\!93}a^{28}+\frac{79\!\cdots\!73}{15\!\cdots\!51}a^{27}-\frac{24\!\cdots\!70}{15\!\cdots\!51}a^{26}+\frac{70\!\cdots\!28}{15\!\cdots\!51}a^{25}-\frac{66\!\cdots\!51}{15\!\cdots\!51}a^{24}+\frac{64\!\cdots\!02}{15\!\cdots\!51}a^{23}+\frac{22\!\cdots\!26}{22\!\cdots\!93}a^{22}+\frac{65\!\cdots\!24}{15\!\cdots\!51}a^{21}+\frac{12\!\cdots\!30}{15\!\cdots\!51}a^{20}+\frac{73\!\cdots\!53}{22\!\cdots\!93}a^{19}+\frac{80\!\cdots\!69}{15\!\cdots\!51}a^{18}+\frac{37\!\cdots\!69}{15\!\cdots\!51}a^{17}+\frac{59\!\cdots\!33}{22\!\cdots\!93}a^{16}+\frac{10\!\cdots\!48}{22\!\cdots\!93}a^{15}+\frac{10\!\cdots\!00}{15\!\cdots\!51}a^{14}+\frac{15\!\cdots\!92}{15\!\cdots\!51}a^{13}+\frac{24\!\cdots\!63}{22\!\cdots\!93}a^{12}+\frac{26\!\cdots\!17}{15\!\cdots\!51}a^{11}-\frac{15\!\cdots\!86}{15\!\cdots\!51}a^{10}+\frac{17\!\cdots\!05}{22\!\cdots\!93}a^{9}-\frac{78\!\cdots\!52}{15\!\cdots\!51}a^{8}+\frac{73\!\cdots\!68}{15\!\cdots\!51}a^{7}-\frac{29\!\cdots\!09}{15\!\cdots\!51}a^{6}+\frac{51\!\cdots\!41}{15\!\cdots\!51}a^{5}+\frac{39\!\cdots\!82}{15\!\cdots\!51}a^{4}+\frac{13\!\cdots\!60}{36\!\cdots\!57}a^{3}-\frac{37\!\cdots\!28}{15\!\cdots\!51}a^{2}+\frac{26\!\cdots\!62}{22\!\cdots\!93}a-\frac{18\!\cdots\!86}{15\!\cdots\!51}$, $\frac{57\!\cdots\!60}{15\!\cdots\!51}a^{28}-\frac{28\!\cdots\!30}{15\!\cdots\!51}a^{27}+\frac{51\!\cdots\!40}{15\!\cdots\!51}a^{26}-\frac{58\!\cdots\!46}{15\!\cdots\!51}a^{25}+\frac{47\!\cdots\!50}{15\!\cdots\!51}a^{24}-\frac{81\!\cdots\!04}{15\!\cdots\!51}a^{23}+\frac{45\!\cdots\!60}{15\!\cdots\!51}a^{22}+\frac{84\!\cdots\!70}{15\!\cdots\!51}a^{21}+\frac{35\!\cdots\!46}{15\!\cdots\!51}a^{20}+\frac{51\!\cdots\!50}{15\!\cdots\!51}a^{19}+\frac{26\!\cdots\!10}{15\!\cdots\!51}a^{18}+\frac{24\!\cdots\!10}{15\!\cdots\!51}a^{17}+\frac{28\!\cdots\!04}{22\!\cdots\!93}a^{16}+\frac{62\!\cdots\!04}{15\!\cdots\!51}a^{15}+\frac{10\!\cdots\!00}{15\!\cdots\!51}a^{14}+\frac{10\!\cdots\!80}{15\!\cdots\!51}a^{13}+\frac{16\!\cdots\!70}{15\!\cdots\!51}a^{12}-\frac{14\!\cdots\!30}{15\!\cdots\!51}a^{11}+\frac{11\!\cdots\!96}{15\!\cdots\!51}a^{10}-\frac{34\!\cdots\!48}{15\!\cdots\!51}a^{9}+\frac{65\!\cdots\!30}{15\!\cdots\!51}a^{8}-\frac{31\!\cdots\!50}{15\!\cdots\!51}a^{7}+\frac{41\!\cdots\!70}{15\!\cdots\!51}a^{6}-\frac{44\!\cdots\!46}{15\!\cdots\!51}a^{5}+\frac{47\!\cdots\!50}{15\!\cdots\!51}a^{4}-\frac{51\!\cdots\!40}{15\!\cdots\!51}a^{3}-\frac{34\!\cdots\!63}{15\!\cdots\!51}a^{2}-\frac{57\!\cdots\!60}{15\!\cdots\!51}a+\frac{57\!\cdots\!46}{15\!\cdots\!51}$, $\frac{13\!\cdots\!90}{15\!\cdots\!51}a^{29}+\frac{13\!\cdots\!19}{15\!\cdots\!51}a^{28}+\frac{13\!\cdots\!00}{15\!\cdots\!51}a^{27}-\frac{52\!\cdots\!87}{15\!\cdots\!51}a^{26}+\frac{11\!\cdots\!05}{15\!\cdots\!51}a^{25}-\frac{12\!\cdots\!80}{15\!\cdots\!51}a^{24}+\frac{10\!\cdots\!31}{15\!\cdots\!51}a^{23}+\frac{24\!\cdots\!75}{15\!\cdots\!51}a^{22}+\frac{10\!\cdots\!00}{15\!\cdots\!51}a^{21}+\frac{20\!\cdots\!90}{15\!\cdots\!51}a^{20}+\frac{11\!\cdots\!47}{22\!\cdots\!93}a^{19}+\frac{12\!\cdots\!19}{15\!\cdots\!51}a^{18}+\frac{61\!\cdots\!25}{15\!\cdots\!51}a^{17}+\frac{63\!\cdots\!15}{15\!\cdots\!51}a^{16}+\frac{11\!\cdots\!65}{15\!\cdots\!51}a^{15}+\frac{15\!\cdots\!95}{15\!\cdots\!51}a^{14}+\frac{24\!\cdots\!06}{15\!\cdots\!51}a^{13}+\frac{25\!\cdots\!67}{15\!\cdots\!51}a^{12}+\frac{58\!\cdots\!60}{22\!\cdots\!93}a^{11}-\frac{29\!\cdots\!45}{15\!\cdots\!51}a^{10}+\frac{22\!\cdots\!95}{15\!\cdots\!51}a^{9}-\frac{14\!\cdots\!06}{15\!\cdots\!51}a^{8}+\frac{18\!\cdots\!00}{22\!\cdots\!93}a^{7}-\frac{11\!\cdots\!45}{32\!\cdots\!99}a^{6}+\frac{88\!\cdots\!13}{15\!\cdots\!51}a^{5}-\frac{66\!\cdots\!85}{15\!\cdots\!51}a^{4}+\frac{70\!\cdots\!81}{15\!\cdots\!51}a^{3}-\frac{75\!\cdots\!25}{15\!\cdots\!51}a^{2}+\frac{78\!\cdots\!40}{15\!\cdots\!51}a-\frac{65\!\cdots\!95}{15\!\cdots\!51}$, $\frac{288074480023250}{22\!\cdots\!93}a^{28}-\frac{144037240011625}{22\!\cdots\!93}a^{27}+\frac{25\!\cdots\!50}{22\!\cdots\!93}a^{26}-\frac{29\!\cdots\!25}{22\!\cdots\!93}a^{25}+\frac{23\!\cdots\!25}{22\!\cdots\!93}a^{24}-\frac{40\!\cdots\!95}{22\!\cdots\!93}a^{23}+\frac{22\!\cdots\!00}{22\!\cdots\!93}a^{22}+\frac{42\!\cdots\!75}{22\!\cdots\!93}a^{21}+\frac{17\!\cdots\!75}{22\!\cdots\!93}a^{20}+\frac{25\!\cdots\!25}{22\!\cdots\!93}a^{19}+\frac{13\!\cdots\!75}{22\!\cdots\!93}a^{18}+\frac{12\!\cdots\!25}{22\!\cdots\!93}a^{17}+\frac{14\!\cdots\!26}{32\!\cdots\!99}a^{16}+\frac{31\!\cdots\!50}{22\!\cdots\!93}a^{15}+\frac{50\!\cdots\!50}{22\!\cdots\!93}a^{14}+\frac{51\!\cdots\!50}{22\!\cdots\!93}a^{13}+\frac{84\!\cdots\!75}{22\!\cdots\!93}a^{12}-\frac{73\!\cdots\!75}{22\!\cdots\!93}a^{11}+\frac{56\!\cdots\!50}{22\!\cdots\!93}a^{10}-\frac{17\!\cdots\!40}{22\!\cdots\!93}a^{9}+\frac{32\!\cdots\!75}{22\!\cdots\!93}a^{8}-\frac{15\!\cdots\!75}{22\!\cdots\!93}a^{7}+\frac{20\!\cdots\!75}{22\!\cdots\!93}a^{6}-\frac{22\!\cdots\!75}{22\!\cdots\!93}a^{5}+\frac{23\!\cdots\!25}{22\!\cdots\!93}a^{4}-\frac{25\!\cdots\!50}{22\!\cdots\!93}a^{3}-\frac{21\!\cdots\!40}{22\!\cdots\!93}a^{2}-\frac{288074480023250}{22\!\cdots\!93}a+\frac{28807448002325}{22\!\cdots\!93}$, $\frac{42560726506259}{15\!\cdots\!51}a^{28}+\frac{13\!\cdots\!47}{15\!\cdots\!51}a^{21}-\frac{11\!\cdots\!31}{15\!\cdots\!51}a^{14}+\frac{24\!\cdots\!92}{15\!\cdots\!51}a^{7}-\frac{26\!\cdots\!18}{15\!\cdots\!51}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 1429364684924.111 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{15}\cdot 1429364684924.111 \cdot 9616}{14\cdot\sqrt{4764432829290274543179606325793429277837276458740234375}}\cr\approx \mathstrut & 0.422378582110552 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^30 + 10*x^28 - 5*x^27 + 90*x^26 - 101*x^25 + 825*x^24 + 1800*x^23 + 7860*x^22 + 14795*x^21 + 61451*x^20 + 89825*x^19 + 460135*x^18 + 435185*x^17 + 861265*x^16 + 1091474*x^15 + 1745550*x^14 + 1796430*x^13 + 2950295*x^12 - 2539455*x^11 + 1973826*x^10 - 1313050*x^9 + 1136155*x^8 - 555375*x^7 + 727995*x^6 - 77851*x^5 + 8325*x^4 - 890*x^3 + 95*x^2 - 10*x + 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^30 + 10*x^28 - 5*x^27 + 90*x^26 - 101*x^25 + 825*x^24 + 1800*x^23 + 7860*x^22 + 14795*x^21 + 61451*x^20 + 89825*x^19 + 460135*x^18 + 435185*x^17 + 861265*x^16 + 1091474*x^15 + 1745550*x^14 + 1796430*x^13 + 2950295*x^12 - 2539455*x^11 + 1973826*x^10 - 1313050*x^9 + 1136155*x^8 - 555375*x^7 + 727995*x^6 - 77851*x^5 + 8325*x^4 - 890*x^3 + 95*x^2 - 10*x + 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^30 + 10*x^28 - 5*x^27 + 90*x^26 - 101*x^25 + 825*x^24 + 1800*x^23 + 7860*x^22 + 14795*x^21 + 61451*x^20 + 89825*x^19 + 460135*x^18 + 435185*x^17 + 861265*x^16 + 1091474*x^15 + 1745550*x^14 + 1796430*x^13 + 2950295*x^12 - 2539455*x^11 + 1973826*x^10 - 1313050*x^9 + 1136155*x^8 - 555375*x^7 + 727995*x^6 - 77851*x^5 + 8325*x^4 - 890*x^3 + 95*x^2 - 10*x + 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^30 + 10*x^28 - 5*x^27 + 90*x^26 - 101*x^25 + 825*x^24 + 1800*x^23 + 7860*x^22 + 14795*x^21 + 61451*x^20 + 89825*x^19 + 460135*x^18 + 435185*x^17 + 861265*x^16 + 1091474*x^15 + 1745550*x^14 + 1796430*x^13 + 2950295*x^12 - 2539455*x^11 + 1973826*x^10 - 1313050*x^9 + 1136155*x^8 - 555375*x^7 + 727995*x^6 - 77851*x^5 + 8325*x^4 - 890*x^3 + 95*x^2 - 10*x + 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{30}$ (as 30T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 30
The 30 conjugacy class representatives for $C_{30}$
Character table for $C_{30}$

Intermediate fields

\(\Q(\sqrt{-7}) \), \(\Q(\zeta_{7})^+\), 5.5.390625.1, \(\Q(\zeta_{7})\), 10.0.2564544677734375.1, 15.15.16836836874485015869140625.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $15^{2}$ $30$ R R $15^{2}$ ${\href{/padicField/13.10.0.1}{10} }^{3}$ $30$ $30$ $15^{2}$ ${\href{/padicField/29.5.0.1}{5} }^{6}$ $30$ $15^{2}$ ${\href{/padicField/41.10.0.1}{10} }^{3}$ ${\href{/padicField/43.1.0.1}{1} }^{30}$ $30$ $15^{2}$ $30$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(5\) Copy content Toggle raw display Deg $30$$5$$6$$48$
\(7\) Copy content Toggle raw display 7.6.5.5$x^{6} + 7$$6$$1$$5$$C_6$$[\ ]_{6}$
7.6.5.5$x^{6} + 7$$6$$1$$5$$C_6$$[\ ]_{6}$
7.6.5.5$x^{6} + 7$$6$$1$$5$$C_6$$[\ ]_{6}$
7.6.5.5$x^{6} + 7$$6$$1$$5$$C_6$$[\ ]_{6}$
7.6.5.5$x^{6} + 7$$6$$1$$5$$C_6$$[\ ]_{6}$