Normalized defining polynomial
\( x^{30} - 3 x + 5 \)
Invariants
| Degree: | $30$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 15]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-4261134590879223155064689667620390800483281723554160327506460291=-\,3^{29}\cdot 71\cdot 467\cdot 51628578737\cdot 9899468832468151\cdot 3663798440144491003\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $132.12$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 71, 467, 51628578737, 9899468832468151, 3663798440144491003$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $\frac{1}{3} a^{29} - \frac{1}{3} a^{28} + \frac{1}{3} a^{27} - \frac{1}{3} a^{26} + \frac{1}{3} a^{25} - \frac{1}{3} a^{24} + \frac{1}{3} a^{23} - \frac{1}{3} a^{22} + \frac{1}{3} a^{21} - \frac{1}{3} a^{20} + \frac{1}{3} a^{19} - \frac{1}{3} a^{18} + \frac{1}{3} a^{17} - \frac{1}{3} a^{16} + \frac{1}{3} a^{15} - \frac{1}{3} a^{14} + \frac{1}{3} a^{13} - \frac{1}{3} a^{12} + \frac{1}{3} a^{11} - \frac{1}{3} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{1}{3}$
Class group and class number
Not computed
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_{30}$ (as 30T5712):
| A non-solvable group of order 265252859812191058636308480000000 |
| The 5604 conjugacy class representatives for $S_{30}$ are not computed |
| Character table for $S_{30}$ is not computed |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $30$ | R | ${\href{/LocalNumberField/5.14.0.1}{14} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.13.0.1}{13} }{,}\,{\href{/LocalNumberField/7.11.0.1}{11} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | $18{,}\,{\href{/LocalNumberField/11.11.0.1}{11} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.11.0.1}{11} }{,}\,{\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.7.0.1}{7} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | $26{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | $18{,}\,{\href{/LocalNumberField/19.11.0.1}{11} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.7.0.1}{7} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{6}$ | $16{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | $19{,}\,{\href{/LocalNumberField/37.11.0.1}{11} }$ | ${\href{/LocalNumberField/41.14.0.1}{14} }{,}\,{\href{/LocalNumberField/41.11.0.1}{11} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }$ | $16{,}\,{\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | $15{,}\,{\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }$ | ${\href{/LocalNumberField/53.14.0.1}{14} }{,}\,{\href{/LocalNumberField/53.7.0.1}{7} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | $30$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.3.4.4 | $x^{3} + 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $S_3$ | $[2]^{2}$ | |
| 3.12.12.2 | $x^{12} + 78 x^{10} - 75 x^{9} - 36 x^{8} + 36 x^{7} + 81 x^{6} - 81 x^{5} - 81 x^{4} + 81 x^{3} + 81 x^{2} + 81 x - 81$ | $3$ | $4$ | $12$ | 12T173 | $[3/2, 3/2, 3/2, 3/2]_{2}^{4}$ | |
| 3.12.12.22 | $x^{12} + 18 x^{11} + 21 x^{10} - 69 x^{9} - 81 x^{8} + 72 x^{7} - 90 x^{6} - 108 x^{5} + 54 x^{4} - 108 x^{3} - 81$ | $3$ | $4$ | $12$ | 12T119 | $[3/2, 3/2, 3/2]_{2}^{4}$ | |
| $71$ | $\Q_{71}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 71.2.1.2 | $x^{2} + 142$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 71.7.0.1 | $x^{7} - x + 6$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ | |
| 71.10.0.1 | $x^{10} - x + 22$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| 71.10.0.1 | $x^{10} - x + 22$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| 467 | Data not computed | ||||||
| 51628578737 | Data not computed | ||||||
| 9899468832468151 | Data not computed | ||||||
| 3663798440144491003 | Data not computed | ||||||