Normalized defining polynomial
\( x^{30} - x^{29} + 12 x^{28} + 6 x^{27} + 173 x^{26} + 129 x^{25} + 1643 x^{24} + 2795 x^{23} + 15662 x^{22} + 28037 x^{21} + 136385 x^{20} + 216461 x^{19} + 1070782 x^{18} + 1313102 x^{17} + 6916917 x^{16} + 7266688 x^{15} + 35140797 x^{14} + 35846744 x^{13} + 146815832 x^{12} + 127074731 x^{11} + 495709581 x^{10} + 296908461 x^{9} + 1402022003 x^{8} + 268246414 x^{7} + 3146885812 x^{6} - 288473284 x^{5} + 5155475097 x^{4} - 338196921 x^{3} + 5106469195 x^{2} - 688273342 x + 2988813059 \)
Invariants
| Degree: | $30$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 15]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-403111798205699600205760315000413793695475942596435546875=-\,5^{15}\cdot 7^{25}\cdot 11^{24}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $77.06$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(385=5\cdot 7\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{385}(256,·)$, $\chi_{385}(1,·)$, $\chi_{385}(69,·)$, $\chi_{385}(199,·)$, $\chi_{385}(331,·)$, $\chi_{385}(141,·)$, $\chi_{385}(334,·)$, $\chi_{385}(269,·)$, $\chi_{385}(16,·)$, $\chi_{385}(81,·)$, $\chi_{385}(339,·)$, $\chi_{385}(366,·)$, $\chi_{385}(86,·)$, $\chi_{385}(279,·)$, $\chi_{385}(89,·)$, $\chi_{385}(221,·)$, $\chi_{385}(159,·)$, $\chi_{385}(34,·)$, $\chi_{385}(291,·)$, $\chi_{385}(36,·)$, $\chi_{385}(229,·)$, $\chi_{385}(104,·)$, $\chi_{385}(361,·)$, $\chi_{385}(234,·)$, $\chi_{385}(71,·)$, $\chi_{385}(174,·)$, $\chi_{385}(246,·)$, $\chi_{385}(59,·)$, $\chi_{385}(124,·)$, $\chi_{385}(191,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{13} a^{20} - \frac{3}{13} a^{19} + \frac{4}{13} a^{18} + \frac{2}{13} a^{17} + \frac{1}{13} a^{16} - \frac{3}{13} a^{15} + \frac{5}{13} a^{14} + \frac{3}{13} a^{13} + \frac{5}{13} a^{12} + \frac{5}{13} a^{11} - \frac{5}{13} a^{10} - \frac{5}{13} a^{7} + \frac{6}{13} a^{6} - \frac{5}{13} a^{5} - \frac{3}{13} a^{4} - \frac{2}{13} a^{3} - \frac{1}{13} a^{2} + \frac{1}{13} a + \frac{2}{13}$, $\frac{1}{13} a^{21} - \frac{5}{13} a^{19} + \frac{1}{13} a^{18} - \frac{6}{13} a^{17} - \frac{4}{13} a^{15} + \frac{5}{13} a^{14} + \frac{1}{13} a^{13} - \frac{6}{13} a^{12} - \frac{3}{13} a^{11} - \frac{2}{13} a^{10} - \frac{5}{13} a^{8} + \frac{4}{13} a^{7} - \frac{5}{13} a^{5} + \frac{2}{13} a^{4} + \frac{6}{13} a^{3} - \frac{2}{13} a^{2} + \frac{5}{13} a + \frac{6}{13}$, $\frac{1}{13} a^{22} - \frac{1}{13} a^{19} + \frac{1}{13} a^{18} - \frac{3}{13} a^{17} + \frac{1}{13} a^{16} + \frac{3}{13} a^{15} - \frac{4}{13} a^{13} - \frac{4}{13} a^{12} - \frac{3}{13} a^{11} + \frac{1}{13} a^{10} - \frac{5}{13} a^{9} + \frac{4}{13} a^{8} + \frac{1}{13} a^{7} - \frac{1}{13} a^{6} + \frac{3}{13} a^{5} + \frac{4}{13} a^{4} + \frac{1}{13} a^{3} - \frac{2}{13} a - \frac{3}{13}$, $\frac{1}{13} a^{23} - \frac{2}{13} a^{19} + \frac{1}{13} a^{18} + \frac{3}{13} a^{17} + \frac{4}{13} a^{16} - \frac{3}{13} a^{15} + \frac{1}{13} a^{14} - \frac{1}{13} a^{13} + \frac{2}{13} a^{12} + \frac{6}{13} a^{11} + \frac{3}{13} a^{10} + \frac{4}{13} a^{9} + \frac{1}{13} a^{8} - \frac{6}{13} a^{7} - \frac{4}{13} a^{6} - \frac{1}{13} a^{5} - \frac{2}{13} a^{4} - \frac{2}{13} a^{3} - \frac{3}{13} a^{2} - \frac{2}{13} a + \frac{2}{13}$, $\frac{1}{13} a^{24} - \frac{5}{13} a^{19} - \frac{2}{13} a^{18} - \frac{5}{13} a^{17} - \frac{1}{13} a^{16} - \frac{5}{13} a^{15} - \frac{4}{13} a^{14} - \frac{5}{13} a^{13} + \frac{3}{13} a^{12} - \frac{6}{13} a^{10} + \frac{1}{13} a^{9} - \frac{6}{13} a^{8} - \frac{1}{13} a^{7} - \frac{2}{13} a^{6} + \frac{1}{13} a^{5} + \frac{5}{13} a^{4} + \frac{6}{13} a^{3} - \frac{4}{13} a^{2} + \frac{4}{13} a + \frac{4}{13}$, $\frac{1}{13} a^{25} - \frac{4}{13} a^{19} + \frac{2}{13} a^{18} - \frac{4}{13} a^{17} - \frac{6}{13} a^{15} - \frac{6}{13} a^{14} + \frac{5}{13} a^{13} - \frac{1}{13} a^{12} + \frac{6}{13} a^{11} + \frac{2}{13} a^{10} - \frac{6}{13} a^{9} - \frac{1}{13} a^{8} - \frac{1}{13} a^{7} + \frac{5}{13} a^{6} + \frac{6}{13} a^{5} + \frac{4}{13} a^{4} - \frac{1}{13} a^{3} - \frac{1}{13} a^{2} - \frac{4}{13} a - \frac{3}{13}$, $\frac{1}{13} a^{26} + \frac{3}{13} a^{19} - \frac{1}{13} a^{18} - \frac{5}{13} a^{17} - \frac{2}{13} a^{16} - \frac{5}{13} a^{15} - \frac{1}{13} a^{14} - \frac{2}{13} a^{13} - \frac{4}{13} a^{11} - \frac{1}{13} a^{9} - \frac{1}{13} a^{8} - \frac{2}{13} a^{7} + \frac{4}{13} a^{6} - \frac{3}{13} a^{5} + \frac{4}{13} a^{3} + \frac{5}{13} a^{2} + \frac{1}{13} a - \frac{5}{13}$, $\frac{1}{13} a^{27} - \frac{5}{13} a^{19} - \frac{4}{13} a^{18} + \frac{5}{13} a^{17} + \frac{5}{13} a^{16} - \frac{5}{13} a^{15} - \frac{4}{13} a^{14} + \frac{4}{13} a^{13} - \frac{6}{13} a^{12} - \frac{2}{13} a^{11} + \frac{1}{13} a^{10} - \frac{1}{13} a^{9} - \frac{2}{13} a^{8} + \frac{6}{13} a^{7} + \frac{5}{13} a^{6} + \frac{2}{13} a^{5} - \frac{2}{13} a^{3} + \frac{4}{13} a^{2} + \frac{5}{13} a - \frac{6}{13}$, $\frac{1}{13} a^{28} - \frac{6}{13} a^{19} - \frac{1}{13} a^{18} + \frac{2}{13} a^{17} - \frac{6}{13} a^{15} + \frac{3}{13} a^{14} - \frac{4}{13} a^{13} - \frac{3}{13} a^{12} - \frac{2}{13} a^{9} + \frac{6}{13} a^{8} + \frac{6}{13} a^{7} + \frac{6}{13} a^{6} + \frac{1}{13} a^{5} - \frac{4}{13} a^{4} - \frac{6}{13} a^{3} - \frac{1}{13} a - \frac{3}{13}$, $\frac{1}{59185675690628618628364234514624705796286923854094980988272964408416098661744848206079399859646996396234815656779681831280948127201718157943} a^{29} + \frac{1986852555114428944534677031217758279412681156770413160255148798773926209622360305527905128290864126447758571067113822462465851916619560334}{59185675690628618628364234514624705796286923854094980988272964408416098661744848206079399859646996396234815656779681831280948127201718157943} a^{28} + \frac{935042451021110179562257178271255218014418270324332349602348893678370021759478826422655435781590434142842907897586649560172645593564023489}{59185675690628618628364234514624705796286923854094980988272964408416098661744848206079399859646996396234815656779681831280948127201718157943} a^{27} + \frac{1926183670878701954311961648031307728722311595594450891176368457139668337833019088059502702579891139747335390146244806840626239709082559949}{59185675690628618628364234514624705796286923854094980988272964408416098661744848206079399859646996396234815656779681831280948127201718157943} a^{26} - \frac{1058799702436412621918332805784855220166708000644173849753186019184981244429459523843944970902299707579609134170740321000410172322830687620}{59185675690628618628364234514624705796286923854094980988272964408416098661744848206079399859646996396234815656779681831280948127201718157943} a^{25} - \frac{1389995951983779398046093260990381286905598041585855765873654122766655445750961279786687767372702025880563640731150582487590703402361801366}{59185675690628618628364234514624705796286923854094980988272964408416098661744848206079399859646996396234815656779681831280948127201718157943} a^{24} - \frac{1841445628923700550646746789755817421357780641734081793043763870537879873098051322527187773540257479453436663525355408627824486314723752510}{59185675690628618628364234514624705796286923854094980988272964408416098661744848206079399859646996396234815656779681831280948127201718157943} a^{23} + \frac{1910886813849565451938187605004117788427001519389119374322991267345263099690682354108975038820813224666982861758785384634583696555344600167}{59185675690628618628364234514624705796286923854094980988272964408416098661744848206079399859646996396234815656779681831280948127201718157943} a^{22} - \frac{2025987221817317973623615324958323217364103681268631078464769998743770012946894009158804435226962425156527247165161281918827303631628676371}{59185675690628618628364234514624705796286923854094980988272964408416098661744848206079399859646996396234815656779681831280948127201718157943} a^{21} - \frac{496925175790220861373813902716928941970338671792626481013668498176550209758447463501362204344207897420385734437242555487736221084382174714}{59185675690628618628364234514624705796286923854094980988272964408416098661744848206079399859646996396234815656779681831280948127201718157943} a^{20} + \frac{11046160828375133522675611608793303638632999562870225435204100463449238160618633436569828919371924022456449304882442586051910925329679591921}{59185675690628618628364234514624705796286923854094980988272964408416098661744848206079399859646996396234815656779681831280948127201718157943} a^{19} + \frac{20334911141733927272256597074504231939987898769976084598274341569377148099153092549512867672591687351334887221070859184519130015637133557118}{59185675690628618628364234514624705796286923854094980988272964408416098661744848206079399859646996396234815656779681831280948127201718157943} a^{18} + \frac{23517156385403012073378822259723052068076540927148919018028673211120731514539917766521590597446593711862592290053059344943545163368304154643}{59185675690628618628364234514624705796286923854094980988272964408416098661744848206079399859646996396234815656779681831280948127201718157943} a^{17} - \frac{26983182748835618605829706602548603997122798616412184954563574610936476415252654235008519276490545906296242946527750338606328699072049607207}{59185675690628618628364234514624705796286923854094980988272964408416098661744848206079399859646996396234815656779681831280948127201718157943} a^{16} + \frac{19139653931889264720824112868622386522439171550971775361556718908077576284343680440880623565006672482705428756388566867446188934710600979196}{59185675690628618628364234514624705796286923854094980988272964408416098661744848206079399859646996396234815656779681831280948127201718157943} a^{15} + \frac{14229264619569673865756565396114382523963782236032020889912385295392639076953723059086968851958268651724525509284768129307594188188770690635}{59185675690628618628364234514624705796286923854094980988272964408416098661744848206079399859646996396234815656779681831280948127201718157943} a^{14} + \frac{7023214958673140020838867382927589734862461237649784896458044177715774951266422641733216069178792877121857232485245229113332849093037993993}{59185675690628618628364234514624705796286923854094980988272964408416098661744848206079399859646996396234815656779681831280948127201718157943} a^{13} - \frac{22044082115913115733350394666223383727006682082866364805615891045284022012342894802465859279551400701965307634780769187185112999671251695912}{59185675690628618628364234514624705796286923854094980988272964408416098661744848206079399859646996396234815656779681831280948127201718157943} a^{12} + \frac{3872722228363545425374228850305843277891828829351427809804701182979490923083570739914752689707631168809852080672274197265717367048516762700}{59185675690628618628364234514624705796286923854094980988272964408416098661744848206079399859646996396234815656779681831280948127201718157943} a^{11} - \frac{12662380448660046806016560888218340620229830217192260528191287442923463101517135762716950814168757662116478565024723778459458499388345567651}{59185675690628618628364234514624705796286923854094980988272964408416098661744848206079399859646996396234815656779681831280948127201718157943} a^{10} - \frac{13876085715878215256717965257027108825882969363965251068895898782823842272500178651153220958583611508946431386170753964198776004463610760558}{59185675690628618628364234514624705796286923854094980988272964408416098661744848206079399859646996396234815656779681831280948127201718157943} a^{9} - \frac{14022886539613028361829096574647867392853837379915533951679009718266933983492954618750175274715797347020731617383494658265584190294773670113}{59185675690628618628364234514624705796286923854094980988272964408416098661744848206079399859646996396234815656779681831280948127201718157943} a^{8} + \frac{1326405675380919464407023434673316970690024456268363826673846713870995695097321411059666685421330425699056224900839835322564403744487074332}{4552744283894509125258787270355746599714378758007306229867151108339699897057296015852261527665153568941139665906129371636996009784747550611} a^{7} - \frac{4305925408653307135233855942671410166929709712023265031011925656960526366942316458446209226026021559810521661670025731623602582221440623782}{59185675690628618628364234514624705796286923854094980988272964408416098661744848206079399859646996396234815656779681831280948127201718157943} a^{6} + \frac{21682810988431193799833587759508715050560522237025856473497042332003208943649146428688359187356028246602249481284233296439849511291365117182}{59185675690628618628364234514624705796286923854094980988272964408416098661744848206079399859646996396234815656779681831280948127201718157943} a^{5} + \frac{27357704240322631699982766029247539061945826924227182478858604540892352944835546591661020563431526108813860368187279747231903466033028349834}{59185675690628618628364234514624705796286923854094980988272964408416098661744848206079399859646996396234815656779681831280948127201718157943} a^{4} - \frac{6405703238936745428032954890290672566699863498501066498820274889211173601785856803496028834287890543037081284071484126222830090315615012356}{59185675690628618628364234514624705796286923854094980988272964408416098661744848206079399859646996396234815656779681831280948127201718157943} a^{3} + \frac{28510890979546160868811135329533425357235955760289377211670209542302615708853066386985031399318220265218457476527999403764867586006980098498}{59185675690628618628364234514624705796286923854094980988272964408416098661744848206079399859646996396234815656779681831280948127201718157943} a^{2} + \frac{4965803226637890800118270462431212567220127473587431636380330641565594057456626909164814688260622669522138809837261028824621075648076853842}{59185675690628618628364234514624705796286923854094980988272964408416098661744848206079399859646996396234815656779681831280948127201718157943} a + \frac{5266877853613371540430952828533820103928395279375193810759694290013087797932136439506205225354758360064026708334990134930144039503397383706}{59185675690628618628364234514624705796286923854094980988272964408416098661744848206079399859646996396234815656779681831280948127201718157943}$
Class group and class number
Not computed
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 30 |
| The 30 conjugacy class representatives for $C_{30}$ |
| Character table for $C_{30}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-35}) \), \(\Q(\zeta_{7})^+\), \(\Q(\zeta_{11})^+\), 6.0.2100875.1, 10.0.11258530353021875.4, 15.15.886528337182930278529.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $30$ | $15^{2}$ | R | R | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{6}$ | $15^{2}$ | $30$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{5}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{6}$ | $30$ | $30$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{3}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{15}$ | $15^{2}$ | $30$ | $30$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| $11$ | 11.15.12.1 | $x^{15} + 165 x^{10} + 5324 x^{5} + 323433$ | $5$ | $3$ | $12$ | $C_{15}$ | $[\ ]_{5}^{3}$ |
| 11.15.12.1 | $x^{15} + 165 x^{10} + 5324 x^{5} + 323433$ | $5$ | $3$ | $12$ | $C_{15}$ | $[\ ]_{5}^{3}$ | |