Normalized defining polynomial
\( x^{30} - 6 x^{29} + 25 x^{28} - 72 x^{27} + 234 x^{26} - 520 x^{25} + 1111 x^{24} - 2189 x^{23} + 3903 x^{22} - 4957 x^{21} + 4623 x^{20} - 10333 x^{19} + 8702 x^{18} + 8683 x^{17} - 6137 x^{16} + 9595 x^{15} - 28557 x^{14} + 23199 x^{13} - 20007 x^{12} + 4195 x^{11} + 12906 x^{10} - 27137 x^{9} + 36711 x^{8} - 24629 x^{7} + 24367 x^{6} - 23558 x^{5} + 11264 x^{4} + 26568 x^{3} - 14144 x^{2} - 4128 x + 4928 \)
Invariants
Degree: | $30$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[0, 15]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(-38068577552393333958638260901553477592868939543059\)\(\medspace = -\,11^{12}\cdot 19^{29}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $44.95$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $11, 19$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $6$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{11} a^{17} - \frac{1}{11} a^{16} - \frac{4}{11} a^{15} - \frac{3}{11} a^{14} - \frac{1}{11} a^{13} + \frac{1}{11} a^{12} - \frac{3}{11} a^{11} - \frac{3}{11} a^{10} - \frac{2}{11} a^{9} - \frac{5}{11} a^{8} + \frac{3}{11} a^{7} - \frac{4}{11} a^{5} + \frac{5}{11} a^{4} - \frac{5}{11} a^{3} - \frac{5}{11} a^{2} + \frac{4}{11} a$, $\frac{1}{11} a^{18} - \frac{5}{11} a^{16} + \frac{4}{11} a^{15} - \frac{4}{11} a^{14} - \frac{2}{11} a^{12} + \frac{5}{11} a^{11} - \frac{5}{11} a^{10} + \frac{4}{11} a^{9} - \frac{2}{11} a^{8} + \frac{3}{11} a^{7} - \frac{4}{11} a^{6} + \frac{1}{11} a^{5} + \frac{1}{11} a^{3} - \frac{1}{11} a^{2} + \frac{4}{11} a$, $\frac{1}{22} a^{19} - \frac{1}{22} a^{17} - \frac{1}{2} a^{16} + \frac{1}{11} a^{15} - \frac{1}{22} a^{14} + \frac{5}{22} a^{13} + \frac{9}{22} a^{12} + \frac{5}{22} a^{11} + \frac{3}{22} a^{10} - \frac{5}{11} a^{9} + \frac{5}{22} a^{8} + \frac{4}{11} a^{7} - \frac{5}{11} a^{6} - \frac{5}{22} a^{5} + \frac{5}{11} a^{4} + \frac{1}{22} a^{3} - \frac{5}{22} a^{2} + \frac{5}{22} a$, $\frac{1}{22} a^{20} - \frac{1}{22} a^{18} - \frac{1}{22} a^{17} - \frac{4}{11} a^{16} + \frac{3}{22} a^{15} - \frac{3}{22} a^{14} - \frac{1}{22} a^{13} - \frac{7}{22} a^{12} - \frac{5}{22} a^{11} + \frac{2}{11} a^{10} + \frac{7}{22} a^{9} + \frac{1}{11} a^{8} - \frac{1}{11} a^{7} - \frac{5}{22} a^{6} - \frac{4}{11} a^{5} + \frac{7}{22} a^{4} - \frac{1}{2} a^{3} - \frac{1}{22} a^{2} - \frac{2}{11} a$, $\frac{1}{22} a^{21} - \frac{1}{22} a^{18} - \frac{1}{22} a^{17} + \frac{3}{11} a^{16} - \frac{1}{2} a^{15} - \frac{2}{11} a^{14} - \frac{5}{11} a^{13} - \frac{5}{11} a^{12} + \frac{7}{22} a^{11} + \frac{4}{11} a^{10} - \frac{1}{11} a^{9} + \frac{7}{22} a^{8} + \frac{5}{22} a^{7} + \frac{2}{11} a^{6} - \frac{4}{11} a^{5} - \frac{5}{22} a^{4} + \frac{2}{11} a^{3} - \frac{5}{22} a^{2} - \frac{7}{22} a$, $\frac{1}{22} a^{22} - \frac{1}{22} a^{18} - \frac{1}{22} a^{17} + \frac{3}{11} a^{16} + \frac{7}{22} a^{14} + \frac{1}{22} a^{13} + \frac{5}{11} a^{12} + \frac{9}{22} a^{11} - \frac{3}{22} a^{10} + \frac{9}{22} a^{9} - \frac{2}{11} a^{8} - \frac{3}{11} a^{7} + \frac{2}{11} a^{6} - \frac{4}{11} a^{5} + \frac{3}{11} a^{4} + \frac{2}{11} a^{3} - \frac{2}{11} a^{2} + \frac{3}{22} a$, $\frac{1}{22} a^{23} - \frac{1}{22} a^{18} - \frac{1}{22} a^{17} - \frac{5}{22} a^{16} - \frac{1}{2} a^{15} - \frac{2}{11} a^{14} - \frac{1}{22} a^{13} - \frac{5}{11} a^{12} - \frac{1}{11} a^{11} + \frac{4}{11} a^{10} - \frac{1}{11} a^{9} + \frac{7}{22} a^{8} - \frac{3}{11} a^{7} + \frac{2}{11} a^{6} + \frac{3}{22} a^{5} + \frac{3}{11} a^{4} + \frac{5}{22} a^{3} + \frac{3}{11} a^{2} + \frac{3}{22} a$, $\frac{1}{22} a^{24} - \frac{1}{22} a^{18} - \frac{3}{11} a^{16} - \frac{2}{11} a^{15} + \frac{1}{11} a^{14} - \frac{1}{2} a^{13} - \frac{9}{22} a^{12} - \frac{5}{22} a^{11} + \frac{5}{22} a^{10} + \frac{7}{22} a^{9} - \frac{9}{22} a^{8} + \frac{4}{11} a^{7} - \frac{7}{22} a^{6} - \frac{1}{22} a^{5} + \frac{1}{22} a^{4} - \frac{1}{22} a^{3} - \frac{5}{11} a^{2} + \frac{7}{22} a$, $\frac{1}{22} a^{25} - \frac{1}{22} a^{17} + \frac{1}{22} a^{16} + \frac{1}{11} a^{15} - \frac{4}{11} a^{14} - \frac{5}{11} a^{13} + \frac{5}{11} a^{12} - \frac{4}{11} a^{11} - \frac{4}{11} a^{10} - \frac{9}{22} a^{9} + \frac{5}{22} a^{8} - \frac{3}{22} a^{7} - \frac{1}{2} a^{6} - \frac{3}{11} a^{5} - \frac{5}{22} a^{4} + \frac{5}{22} a^{3} - \frac{3}{11} a^{2} + \frac{7}{22} a$, $\frac{1}{1936} a^{26} + \frac{15}{968} a^{25} + \frac{21}{1936} a^{24} - \frac{7}{484} a^{23} + \frac{1}{88} a^{22} + \frac{3}{242} a^{21} - \frac{3}{176} a^{20} + \frac{39}{1936} a^{19} - \frac{25}{1936} a^{18} + \frac{19}{1936} a^{17} - \frac{529}{1936} a^{16} + \frac{643}{1936} a^{15} - \frac{237}{968} a^{14} - \frac{401}{1936} a^{13} - \frac{157}{1936} a^{12} - \frac{757}{1936} a^{11} - \frac{229}{1936} a^{10} - \frac{1}{1936} a^{9} - \frac{287}{1936} a^{8} + \frac{587}{1936} a^{7} + \frac{477}{968} a^{6} - \frac{741}{1936} a^{5} - \frac{685}{1936} a^{4} - \frac{645}{1936} a^{3} + \frac{343}{1936} a^{2} - \frac{171}{968} a + \frac{19}{44}$, $\frac{1}{27104} a^{27} + \frac{1}{13552} a^{26} + \frac{61}{27104} a^{25} + \frac{3}{308} a^{24} - \frac{257}{13552} a^{23} + \frac{3}{3388} a^{22} - \frac{529}{27104} a^{21} + \frac{347}{27104} a^{20} + \frac{115}{27104} a^{19} - \frac{249}{27104} a^{18} + \frac{1139}{27104} a^{17} + \frac{117}{2464} a^{16} - \frac{377}{1936} a^{15} + \frac{12519}{27104} a^{14} + \frac{9927}{27104} a^{13} - \frac{11057}{27104} a^{12} - \frac{1033}{27104} a^{11} + \frac{8083}{27104} a^{10} + \frac{6957}{27104} a^{9} - \frac{265}{27104} a^{8} - \frac{6157}{13552} a^{7} - \frac{12933}{27104} a^{6} + \frac{3959}{27104} a^{5} + \frac{39}{224} a^{4} - \frac{199}{2464} a^{3} - \frac{503}{1936} a^{2} - \frac{1709}{6776} a + \frac{3}{22}$, $\frac{1}{2385152} a^{28} + \frac{3}{596288} a^{27} - \frac{227}{2385152} a^{26} + \frac{10601}{1192576} a^{25} + \frac{3989}{1192576} a^{24} + \frac{6113}{596288} a^{23} + \frac{6487}{2385152} a^{22} - \frac{38207}{2385152} a^{21} - \frac{49083}{2385152} a^{20} - \frac{44375}{2385152} a^{19} + \frac{10763}{340736} a^{18} + \frac{12767}{340736} a^{17} + \frac{150431}{596288} a^{16} + \frac{935791}{2385152} a^{15} + \frac{385829}{2385152} a^{14} - \frac{584151}{2385152} a^{13} - \frac{1073487}{2385152} a^{12} + \frac{60091}{340736} a^{11} - \frac{148103}{340736} a^{10} - \frac{433043}{2385152} a^{9} - \frac{1755}{298144} a^{8} + \frac{53469}{340736} a^{7} - \frac{284915}{2385152} a^{6} - \frac{161127}{2385152} a^{5} - \frac{27353}{216832} a^{4} + \frac{50879}{149072} a^{3} + \frac{118439}{596288} a^{2} - \frac{255}{9317} a + \frac{877}{1936}$, $\frac{1}{1465591793553231278994577319010110762426867691794969828745298432} a^{29} - \frac{41436511344138686248446418696804450641345415386715208371}{366397948388307819748644329752527690606716922948742457186324608} a^{28} - \frac{2440709993122541998719662914069089176968632460406006768757}{209370256221890182713511045572872966060981098827852832677899776} a^{27} + \frac{185778158119520927333903333789894397758671507792357447049853}{732795896776615639497288659505055381213433845897484914372649216} a^{26} + \frac{710544992704297668581158538453788359646081092453089262023685}{732795896776615639497288659505055381213433845897484914372649216} a^{25} + \frac{8281494590390003473518591553261434189553525885350275651488645}{366397948388307819748644329752527690606716922948742457186324608} a^{24} - \frac{18998273443575443685215983400346266875380227912694732933513257}{1465591793553231278994577319010110762426867691794969828745298432} a^{23} + \frac{3436853730767626397734311501500464612010937100173088428322137}{1465591793553231278994577319010110762426867691794969828745298432} a^{22} - \frac{22944647501421020296647522299868124647452683881261969059273443}{1465591793553231278994577319010110762426867691794969828745298432} a^{21} + \frac{4262833550028329005164480554853199778832644540292899689332065}{1465591793553231278994577319010110762426867691794969828745298432} a^{20} - \frac{17654197434794968436590821459031079256752327157650622316992859}{1465591793553231278994577319010110762426867691794969828745298432} a^{19} + \frac{120610976985870652040336274232091513617510243514874042450619}{6456351513450358057244834004449827147254923752400748144252416} a^{18} - \frac{8061160372101982284997619569187022326962673963898797334494379}{366397948388307819748644329752527690606716922948742457186324608} a^{17} - \frac{82723087145462528448359468515596580037641772537178491893636535}{209370256221890182713511045572872966060981098827852832677899776} a^{16} - \frac{581036346579649324664039009469136816473443484921687984439010787}{1465591793553231278994577319010110762426867691794969828745298432} a^{15} - \frac{373054649634554763591245977717812400504373736991543262797182303}{1465591793553231278994577319010110762426867691794969828745298432} a^{14} - \frac{203697662005218186592150759610310486658972255570426258356485175}{1465591793553231278994577319010110762426867691794969828745298432} a^{13} - \frac{711147644264380924695408080770835537912586133766207353982135051}{1465591793553231278994577319010110762426867691794969828745298432} a^{12} + \frac{489298715641559725840183286621647361839026814930282947611890823}{1465591793553231278994577319010110762426867691794969828745298432} a^{11} + \frac{566841317103803037415452985350965751704081682575744771024783029}{1465591793553231278994577319010110762426867691794969828745298432} a^{10} - \frac{9977636908875501324687091114723151939825828718443176374083655}{22899871774269238734290270609532980662919807684296403574145288} a^{9} + \frac{555153867511537754601747086295982229782802783918373526689085819}{1465591793553231278994577319010110762426867691794969828745298432} a^{8} + \frac{407860133173355673141587296313545022172134798234731615480492965}{1465591793553231278994577319010110762426867691794969828745298432} a^{7} - \frac{299892959750080739308422929873469780280783288679054191280227695}{1465591793553231278994577319010110762426867691794969828745298432} a^{6} + \frac{24330027119734948787041381305439821475646983405354508230565743}{133235617595748298090416119910010069311533426526815438976845312} a^{5} + \frac{9953654919290477491545382986474665866764952038289255456851157}{183198974194153909874322164876263845303358461474371228593162304} a^{4} - \frac{49419796605525193824636601885588808604709165835324654075886493}{366397948388307819748644329752527690606716922948742457186324608} a^{3} + \frac{2090676569021646699579099995530410584038514882930964345527203}{22899871774269238734290270609532980662919807684296403574145288} a^{2} + \frac{3016868877356380070421218486391646244991028387972379546952847}{8327226099734268630651007494375629331970839157925964936052832} a + \frac{3042412795763668041014384512110320935349151440481269124729}{13518224187880306218589297880479917746705907723905787233852}$
Class group and class number
$C_{11}$, which has order $11$ (assuming GRH)
Unit group
Rank: | $14$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 2589248825821.8447 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
$C_6\times D_5$ (as 30T5):
A solvable group of order 60 |
The 24 conjugacy class representatives for $C_6\times D_5$ |
Character table for $C_6\times D_5$ is not computed |
Intermediate fields
\(\Q(\sqrt{-19}) \), 3.3.361.1, 5.1.15768841.1, 6.0.2476099.1, 10.0.4724470583182339.1, 15.3.1415489083272211976282881.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{5}$ | $30$ | $15^{2}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{12}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{6}$ | R | ${\href{/LocalNumberField/13.6.0.1}{6} }^{5}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{4}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | R | $15^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{5}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{3}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{5}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{4}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | $15^{2}$ | $30$ | $30$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
$11$ | $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
19 | Data not computed |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
1.209.2t1.a.a | $1$ | $ 11 \cdot 19 $ | \(\Q(\sqrt{209}) \) | $C_2$ (as 2T1) | $1$ | $1$ | |
1.11.2t1.a.a | $1$ | $ 11 $ | \(\Q(\sqrt{-11}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
* | 1.19.2t1.a.a | $1$ | $ 19 $ | \(\Q(\sqrt{-19}) \) | $C_2$ (as 2T1) | $1$ | $-1$ |
* | 1.19.6t1.a.b | $1$ | $ 19 $ | 6.0.2476099.1 | $C_6$ (as 6T1) | $0$ | $-1$ |
* | 1.19.3t1.a.a | $1$ | $ 19 $ | 3.3.361.1 | $C_3$ (as 3T1) | $0$ | $1$ |
1.209.6t1.b.b | $1$ | $ 11 \cdot 19 $ | 6.0.173457251.1 | $C_6$ (as 6T1) | $0$ | $-1$ | |
1.209.6t1.a.b | $1$ | $ 11 \cdot 19 $ | 6.6.3295687769.1 | $C_6$ (as 6T1) | $0$ | $1$ | |
1.209.6t1.b.a | $1$ | $ 11 \cdot 19 $ | 6.0.173457251.1 | $C_6$ (as 6T1) | $0$ | $-1$ | |
* | 1.19.6t1.a.a | $1$ | $ 19 $ | 6.0.2476099.1 | $C_6$ (as 6T1) | $0$ | $-1$ |
1.209.6t1.a.a | $1$ | $ 11 \cdot 19 $ | 6.6.3295687769.1 | $C_6$ (as 6T1) | $0$ | $1$ | |
* | 1.19.3t1.a.b | $1$ | $ 19 $ | 3.3.361.1 | $C_3$ (as 3T1) | $0$ | $1$ |
* | 2.3971.10t3.a.a | $2$ | $ 11 \cdot 19^{2}$ | 10.0.4724470583182339.1 | $D_{10}$ (as 10T3) | $1$ | $0$ |
* | 2.3971.5t2.a.b | $2$ | $ 11 \cdot 19^{2}$ | 5.1.15768841.1 | $D_{5}$ (as 5T2) | $1$ | $0$ |
* | 2.3971.10t3.a.b | $2$ | $ 11 \cdot 19^{2}$ | 10.0.4724470583182339.1 | $D_{10}$ (as 10T3) | $1$ | $0$ |
* | 2.3971.5t2.a.a | $2$ | $ 11 \cdot 19^{2}$ | 5.1.15768841.1 | $D_{5}$ (as 5T2) | $1$ | $0$ |
* | 2.3971.15t3.a.a | $2$ | $ 11 \cdot 19^{2}$ | 15.3.1415489083272211976282881.1 | $D_5\times C_3$ (as 15T3) | $0$ | $0$ |
* | 2.3971.30t5.a.a | $2$ | $ 11 \cdot 19^{2}$ | 30.0.38068577552393333958638260901553477592868939543059.1 | $C_6\times D_5$ (as 30T5) | $0$ | $0$ |
* | 2.3971.30t5.a.c | $2$ | $ 11 \cdot 19^{2}$ | 30.0.38068577552393333958638260901553477592868939543059.1 | $C_6\times D_5$ (as 30T5) | $0$ | $0$ |
* | 2.3971.15t3.a.b | $2$ | $ 11 \cdot 19^{2}$ | 15.3.1415489083272211976282881.1 | $D_5\times C_3$ (as 15T3) | $0$ | $0$ |
* | 2.3971.30t5.a.b | $2$ | $ 11 \cdot 19^{2}$ | 30.0.38068577552393333958638260901553477592868939543059.1 | $C_6\times D_5$ (as 30T5) | $0$ | $0$ |
* | 2.3971.15t3.a.c | $2$ | $ 11 \cdot 19^{2}$ | 15.3.1415489083272211976282881.1 | $D_5\times C_3$ (as 15T3) | $0$ | $0$ |
* | 2.3971.15t3.a.d | $2$ | $ 11 \cdot 19^{2}$ | 15.3.1415489083272211976282881.1 | $D_5\times C_3$ (as 15T3) | $0$ | $0$ |
* | 2.3971.30t5.a.d | $2$ | $ 11 \cdot 19^{2}$ | 30.0.38068577552393333958638260901553477592868939543059.1 | $C_6\times D_5$ (as 30T5) | $0$ | $0$ |