Normalized defining polynomial
\(x^{30} - 4 x^{27} + 47 x^{24} + 4 x^{21} + 1159 x^{18} - 1525 x^{15} + 4898 x^{12} + 2458 x^{9} + 1824 x^{6} - 42 x^{3} + 1\)
Invariants
Degree: | $30$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[0, 15]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(-29099190400267368949073680941341991556317731763\)\(\medspace = -\,3^{45}\cdot 11^{24}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $35.38$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $3, 11$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Gal(K/\Q)|$: | $30$ | ||
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(99=3^{2}\cdot 11\) | ||
Dirichlet character group: | $\lbrace$$\chi_{99}(64,·)$, $\chi_{99}(1,·)$, $\chi_{99}(67,·)$, $\chi_{99}(4,·)$, $\chi_{99}(5,·)$, $\chi_{99}(70,·)$, $\chi_{99}(71,·)$, $\chi_{99}(14,·)$, $\chi_{99}(16,·)$, $\chi_{99}(82,·)$, $\chi_{99}(20,·)$, $\chi_{99}(86,·)$, $\chi_{99}(23,·)$, $\chi_{99}(25,·)$, $\chi_{99}(26,·)$, $\chi_{99}(91,·)$, $\chi_{99}(92,·)$, $\chi_{99}(31,·)$, $\chi_{99}(80,·)$, $\chi_{99}(34,·)$, $\chi_{99}(37,·)$, $\chi_{99}(38,·)$, $\chi_{99}(97,·)$, $\chi_{99}(47,·)$, $\chi_{99}(49,·)$, $\chi_{99}(53,·)$, $\chi_{99}(89,·)$, $\chi_{99}(56,·)$, $\chi_{99}(58,·)$, $\chi_{99}(59,·)$$\rbrace$ | ||
This is a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $\frac{1}{13333} a^{24} + \frac{1046}{13333} a^{21} - \frac{4153}{13333} a^{18} - \frac{4586}{13333} a^{15} - \frac{3958}{13333} a^{12} - \frac{6124}{13333} a^{9} + \frac{5299}{13333} a^{6} + \frac{5344}{13333} a^{3} - \frac{393}{13333}$, $\frac{1}{13333} a^{25} + \frac{1046}{13333} a^{22} - \frac{4153}{13333} a^{19} - \frac{4586}{13333} a^{16} - \frac{3958}{13333} a^{13} - \frac{6124}{13333} a^{10} + \frac{5299}{13333} a^{7} + \frac{5344}{13333} a^{4} - \frac{393}{13333} a$, $\frac{1}{13333} a^{26} + \frac{1046}{13333} a^{23} - \frac{4153}{13333} a^{20} - \frac{4586}{13333} a^{17} - \frac{3958}{13333} a^{14} - \frac{6124}{13333} a^{11} + \frac{5299}{13333} a^{8} + \frac{5344}{13333} a^{5} - \frac{393}{13333} a^{2}$, $\frac{1}{5562777263664919} a^{27} - \frac{157248114464}{5562777263664919} a^{24} + \frac{195426713654710}{5562777263664919} a^{21} - \frac{312298975194891}{5562777263664919} a^{18} - \frac{2160781218433615}{5562777263664919} a^{15} + \frac{1365544977074574}{5562777263664919} a^{12} + \frac{918911329346005}{5562777263664919} a^{9} + \frac{483514846846244}{5562777263664919} a^{6} - \frac{1574124489529863}{5562777263664919} a^{3} - \frac{1801075505016551}{5562777263664919}$, $\frac{1}{5562777263664919} a^{28} - \frac{157248114464}{5562777263664919} a^{25} + \frac{195426713654710}{5562777263664919} a^{22} - \frac{312298975194891}{5562777263664919} a^{19} - \frac{2160781218433615}{5562777263664919} a^{16} + \frac{1365544977074574}{5562777263664919} a^{13} + \frac{918911329346005}{5562777263664919} a^{10} + \frac{483514846846244}{5562777263664919} a^{7} - \frac{1574124489529863}{5562777263664919} a^{4} - \frac{1801075505016551}{5562777263664919} a$, $\frac{1}{5562777263664919} a^{29} - \frac{157248114464}{5562777263664919} a^{26} + \frac{195426713654710}{5562777263664919} a^{23} - \frac{312298975194891}{5562777263664919} a^{20} - \frac{2160781218433615}{5562777263664919} a^{17} + \frac{1365544977074574}{5562777263664919} a^{14} + \frac{918911329346005}{5562777263664919} a^{11} + \frac{483514846846244}{5562777263664919} a^{8} - \frac{1574124489529863}{5562777263664919} a^{5} - \frac{1801075505016551}{5562777263664919} a^{2}$
Class group and class number
$C_{31}$, which has order $31$ (assuming GRH)
Unit group
Rank: | $14$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -\frac{430403920418428}{5562777263664919} a^{28} + \frac{1710665660120153}{5562777263664919} a^{25} - \frac{20186503940073518}{5562777263664919} a^{22} - \frac{2229897514199135}{5562777263664919} a^{19} - \frac{498949407475743763}{5562777263664919} a^{16} + \frac{643722071295932200}{5562777263664919} a^{13} - \frac{2092985376211195994}{5562777263664919} a^{10} - \frac{1108399926852478656}{5562777263664919} a^{7} - \frac{821994629375481848}{5562777263664919} a^{4} - \frac{615014390609465}{5562777263664919} a \) (order $18$) ![]() | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 15853905121.091976 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A cyclic group of order 30 |
The 30 conjugacy class representatives for $C_{30}$ |
Character table for $C_{30}$ is not computed |
Intermediate fields
\(\Q(\sqrt{-3}) \), \(\Q(\zeta_{9})^+\), \(\Q(\zeta_{11})^+\), \(\Q(\zeta_{9})\), 10.0.52089208083.1, 15.15.10943023107606534329121.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | $30$ | R | $30$ | $15^{2}$ | R | $15^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{3}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{5}$ | $30$ | $15^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{6}$ | $30$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{10}$ | $30$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{3}$ | $30$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
3 | Data not computed | ||||||
11 | Data not computed |